Spaces:
Sleeping
Sleeping
import copy | |
import json | |
import hmac | |
import hashlib | |
import sys | |
from typing import Optional, Dict | |
import mlagents_envs | |
import mlagents.trainers | |
from mlagents import torch_utils | |
from mlagents.trainers.settings import RewardSignalType | |
from mlagents_envs.exception import UnityCommunicationException | |
from mlagents_envs.side_channel import ( | |
IncomingMessage, | |
OutgoingMessage, | |
DefaultTrainingAnalyticsSideChannel, | |
) | |
from mlagents_envs.communicator_objects.training_analytics_pb2 import ( | |
TrainingEnvironmentInitialized, | |
TrainingBehaviorInitialized, | |
) | |
from google.protobuf.any_pb2 import Any | |
from mlagents.trainers.settings import TrainerSettings, RunOptions | |
class TrainingAnalyticsSideChannel(DefaultTrainingAnalyticsSideChannel): | |
""" | |
Side channel that sends information about the training to the Unity environment so it can be logged. | |
""" | |
__vendorKey: str = "unity.ml-agents" | |
def __init__(self) -> None: | |
# >>> uuid.uuid5(uuid.NAMESPACE_URL, "com.unity.ml-agents/TrainingAnalyticsSideChannel") | |
# UUID('b664a4a9-d86f-5a5f-95cb-e8353a7e8356') | |
# Use the same uuid as the parent side channel | |
super().__init__() | |
self.run_options: Optional[RunOptions] = None | |
def _hash(cls, data: str) -> str: | |
res = hmac.new( | |
cls.__vendorKey.encode("utf-8"), data.encode("utf-8"), hashlib.sha256 | |
).hexdigest() | |
return res | |
def on_message_received(self, msg: IncomingMessage) -> None: | |
raise UnityCommunicationException( | |
"The TrainingAnalyticsSideChannel received a message from Unity, " | |
"this should not have happened." | |
) | |
def _sanitize_run_options(cls, config: RunOptions) -> Dict[str, Any]: | |
res = copy.deepcopy(config.as_dict()) | |
# Filter potentially PII behavior names | |
if "behaviors" in res and res["behaviors"]: | |
res["behaviors"] = {cls._hash(k): v for (k, v) in res["behaviors"].items()} | |
for (k, v) in res["behaviors"].items(): | |
if "init_path" in v and v["init_path"] is not None: | |
hashed_path = cls._hash(v["init_path"]) | |
res["behaviors"][k]["init_path"] = hashed_path | |
if "demo_path" in v and v["demo_path"] is not None: | |
hashed_path = cls._hash(v["demo_path"]) | |
res["behaviors"][k]["demo_path"] = hashed_path | |
# Filter potentially PII curriculum and behavior names from Checkpoint Settings | |
if "environment_parameters" in res and res["environment_parameters"]: | |
res["environment_parameters"] = { | |
cls._hash(k): v for (k, v) in res["environment_parameters"].items() | |
} | |
for (curriculumName, curriculum) in res["environment_parameters"].items(): | |
updated_lessons = [] | |
for lesson in curriculum["curriculum"]: | |
new_lesson = copy.deepcopy(lesson) | |
if "name" in lesson: | |
new_lesson["name"] = cls._hash(lesson["name"]) | |
if ( | |
"completion_criteria" in lesson | |
and lesson["completion_criteria"] is not None | |
): | |
new_lesson["completion_criteria"]["behavior"] = cls._hash( | |
new_lesson["completion_criteria"]["behavior"] | |
) | |
updated_lessons.append(new_lesson) | |
res["environment_parameters"][curriculumName][ | |
"curriculum" | |
] = updated_lessons | |
# Filter potentially PII filenames from Checkpoint Settings | |
if "checkpoint_settings" in res and res["checkpoint_settings"] is not None: | |
if ( | |
"initialize_from" in res["checkpoint_settings"] | |
and res["checkpoint_settings"]["initialize_from"] is not None | |
): | |
res["checkpoint_settings"]["initialize_from"] = cls._hash( | |
res["checkpoint_settings"]["initialize_from"] | |
) | |
if ( | |
"results_dir" in res["checkpoint_settings"] | |
and res["checkpoint_settings"]["results_dir"] is not None | |
): | |
res["checkpoint_settings"]["results_dir"] = hash( | |
res["checkpoint_settings"]["results_dir"] | |
) | |
return res | |
def environment_initialized(self, run_options: RunOptions) -> None: | |
self.run_options = run_options | |
# Tuple of (major, minor, patch) | |
vi = sys.version_info | |
env_params = run_options.environment_parameters | |
sanitized_run_options = self._sanitize_run_options(run_options) | |
msg = TrainingEnvironmentInitialized( | |
python_version=f"{vi[0]}.{vi[1]}.{vi[2]}", | |
mlagents_version=mlagents.trainers.__version__, | |
mlagents_envs_version=mlagents_envs.__version__, | |
torch_version=torch_utils.torch.__version__, | |
torch_device_type=torch_utils.default_device().type, | |
num_envs=run_options.env_settings.num_envs, | |
num_environment_parameters=len(env_params) if env_params else 0, | |
run_options=json.dumps(sanitized_run_options), | |
) | |
any_message = Any() | |
any_message.Pack(msg) | |
env_init_msg = OutgoingMessage() | |
env_init_msg.set_raw_bytes(any_message.SerializeToString()) | |
super().queue_message_to_send(env_init_msg) | |
def _sanitize_trainer_settings(cls, config: TrainerSettings) -> Dict[str, Any]: | |
config_dict = copy.deepcopy(config.as_dict()) | |
if "init_path" in config_dict and config_dict["init_path"] is not None: | |
hashed_path = cls._hash(config_dict["init_path"]) | |
config_dict["init_path"] = hashed_path | |
if "demo_path" in config_dict and config_dict["demo_path"] is not None: | |
hashed_path = cls._hash(config_dict["demo_path"]) | |
config_dict["demo_path"] = hashed_path | |
return config_dict | |
def training_started(self, behavior_name: str, config: TrainerSettings) -> None: | |
raw_config = self._sanitize_trainer_settings(config) | |
msg = TrainingBehaviorInitialized( | |
behavior_name=self._hash(behavior_name), | |
trainer_type=config.trainer_type, | |
extrinsic_reward_enabled=( | |
RewardSignalType.EXTRINSIC in config.reward_signals | |
), | |
gail_reward_enabled=(RewardSignalType.GAIL in config.reward_signals), | |
curiosity_reward_enabled=( | |
RewardSignalType.CURIOSITY in config.reward_signals | |
), | |
rnd_reward_enabled=(RewardSignalType.RND in config.reward_signals), | |
behavioral_cloning_enabled=config.behavioral_cloning is not None, | |
recurrent_enabled=config.network_settings.memory is not None, | |
visual_encoder=config.network_settings.vis_encode_type.value, | |
num_network_layers=config.network_settings.num_layers, | |
num_network_hidden_units=config.network_settings.hidden_units, | |
trainer_threaded=config.threaded, | |
self_play_enabled=config.self_play is not None, | |
curriculum_enabled=self._behavior_uses_curriculum(behavior_name), | |
config=json.dumps(raw_config), | |
) | |
any_message = Any() | |
any_message.Pack(msg) | |
training_start_msg = OutgoingMessage() | |
training_start_msg.set_raw_bytes(any_message.SerializeToString()) | |
super().queue_message_to_send(training_start_msg) | |
def _behavior_uses_curriculum(self, behavior_name: str) -> bool: | |
if not self.run_options or not self.run_options.environment_parameters: | |
return False | |
for param_settings in self.run_options.environment_parameters.values(): | |
for lesson in param_settings.curriculum: | |
cc = lesson.completion_criteria | |
if cc and cc.behavior == behavior_name: | |
return True | |
return False | |