Spaces:
Sleeping
Sleeping
# from langchain_text_splitters import RecursiveCharacterTextSplitter | |
# from qdrant_client import QdrantClient | |
# from langchain_openai.embeddings import OpenAIEmbeddings | |
# from langchain_core.prompts import ChatPromptTemplate | |
# from langchain_core.globals import set_llm_cache | |
# from langchain_openai import ChatOpenAI | |
# from langchain_core.caches import InMemoryCache | |
# from operator import itemgetter | |
# from langchain_core.runnables.passthrough import RunnablePassthrough | |
# from langchain_qdrant import QdrantVectorStore, Qdrant | |
import chainlit as cl | |
# chat_model = ChatOpenAI(model="gpt-4o-mini") | |
# te3_small = OpenAIEmbeddings(model="text-embedding-3-small") | |
# set_llm_cache(InMemoryCache()) | |
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=100) | |
# rag_system_prompt_template = """\ | |
# You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context. | |
# """ | |
# rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},] | |
# rag_user_prompt_template = """\ | |
# Question: | |
# {question} | |
# Context: | |
# {context} | |
# """ | |
# chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)]) | |
async def on_chat_start(): | |
await cl.Message(content="Ask away!").send() | |
def rename(orig_author: str): | |
return "AI Assistant" | |
async def main(message: cl.Message): | |
await cl.Message(content="Response").send() |