import gradio as gr | |
from PIL import Image | |
import diffusers | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from huggingface_hub import login | |
login(token="insert your token here") | |
# Load the model | |
model_id = "insert your model path like CoWork/fullers-sdv2-1-768-object-fullersamberale001-v1" | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") | |
def inference(prompt, num_samples): | |
all_images = [] | |
prompt_update = 'insert your trained concept name like fullersamberale001' + prompt | |
images = pipe(prompt_update, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images | |
all_images.extend(images) | |
return all_images | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=inference, | |
inputs=["textbox", "slider"], | |
outputs="gallery", | |
) | |
iface.launch() |