Spaces:
Running
Running
import os | |
import openai | |
import wget | |
import streamlit as st | |
from PIL import Image | |
from serpapi import GoogleSearch | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from bokeh.models.widgets import Button | |
from bokeh.models import CustomJS | |
from streamlit_bokeh_events import streamlit_bokeh_events | |
import base64 | |
from streamlit_player import st_player | |
from pytube import YouTube | |
from pytube import Search | |
import io | |
import warnings | |
from PIL import Image | |
from stability_sdk import client | |
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation | |
from datetime import datetime | |
from google.oauth2 import service_account | |
from googleapiclient.discovery import build | |
import wget | |
import urllib.request | |
import sqlite3 | |
import pandas as pd | |
import pandasql as ps | |
def clean(value): | |
val = value.replace("'",'').replace("[",'').replace("]",'') | |
return val | |
def save_uploadedfile(uploadedfile): | |
with open(uploadedfile.name,"wb") as f: | |
f.write(uploadedfile.getbuffer()) | |
def gpt3(texts): | |
# openai.api_key = os.environ["Secret"] | |
openai.api_key = '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'#'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' #'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' | |
response = openai.Completion.create( | |
engine="text-davinci-002", | |
prompt= texts, | |
temperature=temp, | |
max_tokens=750, | |
top_p=1, | |
frequency_penalty=0.0, | |
presence_penalty=0.0, | |
stop = (";", "/*", "</code>")) | |
x = response.choices[0].text | |
return x | |
def warning(sqlOutput): | |
dl = [] | |
lst = ['DELETE','DROP','TRUNCATE','MERGE','ALTER','UPDATE','INSERT'] | |
op2 = " ".join(sqlOutput.split()) | |
op3 = op2.split(' ') | |
op4 = list(map(lambda x: x.upper(), op3)) | |
for i in op4: | |
if i in lst: | |
dl.append(i) | |
for i in dl: | |
st.warning("This query will " + i + " the data ",icon="⚠️") | |
stability_api = client.StabilityInference( | |
key=st.secrets["STABILITY_KEY"], #os.environ("STABILITY_KEY"), # key=os.environ['STABILITY_KEY'], # API Key reference. | |
verbose=True, # Print debug messages. | |
engine="stable-diffusion-v1-5", # Set the engine to use for generation. | |
# Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0 | |
# stable-diffusion-512-v2-1 stable-diffusion-768-v2-1 stable-inpainting-v1-0 stable-inpainting-512-v2-0 | |
) | |
def search_internet(question): | |
params = { | |
"q": question, | |
"location": "Bengaluru, Karnataka, India", | |
"hl": "hi", | |
"gl": "in", | |
"google_domain": "google.co.in", | |
# "api_key": "" | |
"api_key": st.secrets["GOOGLE_API"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API'] | |
} | |
params = { | |
"q": question, | |
"location": "Bengaluru, Karnataka, India", | |
"hl": "hi", | |
"gl": "in", | |
"google_domain": "google.co.in", | |
# "api_key": "" | |
"api_key": st.secrets["GOOGLE_API"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API'] | |
} | |
search = GoogleSearch(params) | |
results = search.get_dict() | |
organic_results = results["organic_results"] | |
snippets = "" | |
counter = 1 | |
for item in organic_results: | |
snippets += str(counter) + ". " + item.get("snippet", "") + '\n' + item['about_this_result']['source']['source_info_link'] + '\n' | |
counter += 1 | |
# snippets | |
response = openai.Completion.create( | |
model="text-davinci-003", | |
prompt=f'''following are snippets from google search with these as knowledge base only answer questions and print reference link as well followed by answer. \n\n {snippets}\n\n question-{question}\n\nAnswer-''', | |
temperature=0.49, | |
max_tokens=256, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0) | |
string_temp = response.choices[0].text | |
st.write(string_temp) | |
st.write(snippets) | |
# openai.api_key = "" | |
openai.api_key = st.secrets["OPENAI_KEY"] #os.environ("OPENAI_KEY") #os.environ['OPENAI_KEY'] | |
date_time = str(datetime.now()) | |
# dictionary = st.secrets("GSHEET_KEY") | |
# json_object = json.dumps(dictionary, indent=4) | |
def g_sheet_log(myinput, output): | |
SERVICE_ACCOUNT_FILE = 'gsheet.json' | |
credentials = service_account.Credentials.from_service_account_file( | |
filename=SERVICE_ACCOUNT_FILE | |
) | |
service_sheets = build('sheets', 'v4', credentials=credentials) | |
GOOGLE_SHEETS_ID = '16cM8lHm7n_X0ZVLgWfL5fcBhvKWIGO9LQz3zCl2Dn_8' | |
worksheet_name = 'Prompt_Logs!' | |
cell_range_insert = 'A:C' | |
values = ( | |
(myinput, output, date_time), | |
) | |
value_range_body = { | |
'majorDimension' : 'ROWS', | |
'values' : values | |
} | |
service_sheets.spreadsheets().values().append( | |
spreadsheetId=GOOGLE_SHEETS_ID, | |
valueInputOption='USER_ENTERED', | |
range=worksheet_name + cell_range_insert, | |
body=value_range_body | |
).execute() | |
def openai_response(PROMPT): | |
response = openai.Image.create( | |
prompt=PROMPT, | |
n=1, | |
size="256x256", | |
) | |
return response["data"][0]["url"] | |
#page_bg_img = """ | |
#<style> | |
#[data-testid="stAppViewContainer"] { | |
#background-color: #ffffff; | |
#opacity: 0.8; | |
#background-image: repeating-radial-gradient( circle at 0 0, transparent 0, #ffffff 40px ), repeating-linear-gradient( #55a6f655, #55a6f6 ); | |
#} | |
#</style> | |
#""" | |
#st.markdown(page_bg_img, unsafe_allow_html=True) | |
st.title("Welcome to :red[_HyperChat_]!!🤖") | |
st.title("How can I help?") | |
Usage = st.radio( | |
"I want to ask:", | |
('Random Questions', 'Questions based on custom CSV data') | |
) | |
if Usage == 'Questions based on custom CSV data': | |
option = ['Reset','Upload_csv'] | |
res = st.selectbox('Select the Upload_csv option:',option) | |
if res == 'Upload_csv': | |
uploaded_file = st.file_uploader("Add dataset (csv) ",type=['csv']) | |
if uploaded_file is not None: | |
st.write("File Uploaded") | |
file_name=uploaded_file.name | |
ext=file_name.split(".")[0] | |
st.write(ext) | |
df=pd.read_csv(uploaded_file) | |
save_uploadedfile(uploaded_file) | |
col= df.columns | |
try: | |
columns = str((df.columns).tolist()) | |
column = clean(columns) | |
st.write('Columns:' ) | |
st.text(col) | |
except: | |
pass | |
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0) | |
if st.checkbox('Use Prompt'): | |
with st.form(key='columns_in_form2'): | |
col3, col4 = st.columns(2) | |
with col3: | |
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query') | |
submitButton = st.form_submit_button(label = 'Submit') | |
if submitButton: | |
try: | |
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:" | |
result = gpt3(col_p) | |
except: | |
results = gpt3(userPrompt) | |
st.success('loaded') | |
with col4: | |
try: | |
sqlOutput = st.text_area('SQL Query', value=gpt3(col_p)) | |
warning(sqlOutput) | |
cars=pd.read_csv('cars.csv') | |
result_tab2=ps.sqldf(sqlOutput) | |
st.write(result_tab2) | |
with open("fewshot_matplot.txt", "r") as file: | |
text_plot = file.read() | |
result_tab = result_tab2.reset_index(drop=True) | |
result_tab_string = result_tab.to_string() | |
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: " | |
if len(gr_prompt) > 4097: | |
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^') | |
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^') | |
elif len(result_tab2.columns) < 2: | |
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^") | |
else: | |
st.success("Plotting...") | |
response_graph = openai.Completion.create( | |
engine="text-davinci-003", | |
prompt = gr_prompt, | |
max_tokens=1024, | |
n=1, | |
stop=None, | |
temperature=0.5, | |
) | |
if response_graph['choices'][0]['text'] != "": | |
print(response_graph['choices'][0]['text']) | |
exec(response_graph['choices'][0]['text']) | |
else: | |
print('Retry! Graph could not be plotted *_*') | |
except: | |
pass | |
elif Usage == 'Random Questions': | |
Input_type = st.radio( | |
"**Input type:**", | |
('TEXT', 'SPEECH') | |
) | |
if Input_type == 'TEXT': | |
#page_bg_img2 = """ | |
#<style> | |
#[data-testid="stAppViewContainer"] { | |
#background-color: #e5e5f7; | |
#opacity: 0.8; | |
#background-size: 20px 20px; | |
#background-image: repeating-linear-gradient(0deg, #32d947, #32d947 1px, #e5e5f7 1px, #e5e5f7); | |
#} | |
#</style> | |
#""" | |
#st.markdown(page_bg_img, unsafe_allow_html=True) | |
st.write('**You are now in Text input mode**') | |
mytext = st.text_input('**Go on! Ask me anything:**') | |
if st.button("SUBMIT"): | |
question=mytext | |
response = openai.Completion.create( | |
model="text-davinci-003", | |
prompt=f'''Your name is alexa and knowledge cutoff date is 2021-09, and it is not aware of any events after that time. if the | |
Answer to following questions is not from your knowledge base or in case of queries like weather | |
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question, | |
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated") | |
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query") | |
if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") . | |
if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)") | |
\nQuestion-{question} | |
\nAnswer -''', | |
temperature=0.49, | |
max_tokens=256, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
string_temp=response.choices[0].text | |
if ("gen_draw" in string_temp): | |
try: | |
try: | |
wget.download(openai_response(prompt)) | |
img2 = Image.open(wget.download(openai_response(prompt))) | |
img2.show() | |
rx = 'Image returned' | |
g_sheet_log(mytext, rx) | |
except: | |
urllib.request.urlretrieve(openai_response(prompt),"img_ret.png") | |
img = Image.open("img_ret.png") | |
img.show() | |
rx = 'Image returned' | |
g_sheet_log(mytext, rx) | |
except: | |
# Set up our initial generation parameters. | |
answers = stability_api.generate( | |
prompt = mytext, | |
seed=992446758, # If a seed is provided, the resulting generated image will be deterministic. | |
# What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again. | |
# Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook. | |
steps=30, # Amount of inference steps performed on image generation. Defaults to 30. | |
cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt. | |
# Setting this value higher increases the strength in which it tries to match your prompt. | |
# Defaults to 7.0 if not specified. | |
width=512, # Generation width, defaults to 512 if not included. | |
height=512, # Generation height, defaults to 512 if not included. | |
samples=1, # Number of images to generate, defaults to 1 if not included. | |
sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with. | |
# Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers. | |
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m) | |
) | |
# Set up our warning to print to the console if the adult content classifier is tripped. | |
# If adult content classifier is not tripped, save generated images. | |
for resp in answers: | |
for artifact in resp.artifacts: | |
if artifact.finish_reason == generation.FILTER: | |
warnings.warn( | |
"Your request activated the API's safety filters and could not be processed." | |
"Please modify the prompt and try again.") | |
if artifact.type == generation.ARTIFACT_IMAGE: | |
img = Image.open(io.BytesIO(artifact.binary)) | |
st.image(img) | |
img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename. | |
rx = 'Image returned' | |
g_sheet_log(mytext, rx) | |
# except: | |
# st.write('image is being generated please wait...') | |
# def extract_image_description(input_string): | |
# return input_string.split('gen_draw("')[1].split('")')[0] | |
# prompt=extract_image_description(string_temp) | |
# # model_id = "CompVis/stable-diffusion-v1-4" | |
# model_id='runwayml/stable-diffusion-v1-5' | |
# device = "cuda" | |
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
# pipe = pipe.to(device) | |
# # prompt = "a photo of an astronaut riding a horse on mars" | |
# image = pipe(prompt).images[0] | |
# image.save("astronaut_rides_horse.png") | |
# st.image(image) | |
# # image | |
elif ("vid_tube" in string_temp): | |
s = Search(mytext) | |
search_res = s.results | |
first_vid = search_res[0] | |
print(first_vid) | |
string = str(first_vid) | |
video_id = string[string.index('=') + 1:-1] | |
# print(video_id) | |
YoutubeURL = "https://www.youtube.com/watch?v=" | |
OurURL = YoutubeURL + video_id | |
st.write(OurURL) | |
st_player(OurURL) | |
ry = 'Youtube link and video returned' | |
g_sheet_log(mytext, ry) | |
elif ("don't" in string_temp or "internet" in string_temp): | |
st.write('searching internet ') | |
search_internet(question) | |
rz = 'Internet result returned' | |
g_sheet_log(mytext, rz) | |
else: | |
st.write(string_temp) | |
g_sheet_log(mytext, string_temp) | |
elif Input_type == 'SPEECH': | |
stt_button = Button(label="Speak", width=100) | |
stt_button.js_on_event("button_click", CustomJS(code=""" | |
var recognition = new webkitSpeechRecognition(); | |
recognition.continuous = true; | |
recognition.interimResults = true; | |
recognition.onresult = function (e) { | |
var value = ""; | |
for (var i = e.resultIndex; i < e.results.length; ++i) { | |
if (e.results[i].isFinal) { | |
value += e.results[i][0].transcript; | |
} | |
} | |
if ( value != "") { | |
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value})); | |
} | |
} | |
recognition.start(); | |
""")) | |
result = streamlit_bokeh_events( | |
stt_button, | |
events="GET_TEXT", | |
key="listen", | |
refresh_on_update=False, | |
override_height=75, | |
debounce_time=0) | |
if result: | |
if "GET_TEXT" in result: | |
st.write(result.get("GET_TEXT")) | |
question = result.get("GET_TEXT") | |
response = openai.Completion.create( | |
model="text-davinci-003", | |
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the | |
Answer to following questions is not from your knowledge base or in case of queries like weather | |
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question, | |
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated") | |
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query") | |
\nQuestion-{question} | |
\nAnswer -''', | |
temperature=0.49, | |
max_tokens=256, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
string_temp=response.choices[0].text | |
if ("gen_draw" in string_temp): | |
st.write('*image is being generated please wait..* ') | |
def extract_image_description(input_string): | |
return input_string.split('gen_draw("')[1].split('")')[0] | |
prompt=extract_image_description(string_temp) | |
# model_id = "CompVis/stable-diffusion-v1-4" | |
model_id='runwayml/stable-diffusion-v1-5' | |
device = "cuda" | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
pipe = pipe.to(device) | |
# prompt = "a photo of an astronaut riding a horse on mars" | |
image = pipe(prompt).images[0] | |
image.save("astronaut_rides_horse.png") | |
st.image(image) | |
# image | |
elif ("vid_tube" in string_temp): | |
s = Search(question) | |
search_res = s.results | |
first_vid = search_res[0] | |
print(first_vid) | |
string = str(first_vid) | |
video_id = string[string.index('=') + 1:-1] | |
# print(video_id) | |
YoutubeURL = "https://www.youtube.com/watch?v=" | |
OurURL = YoutubeURL + video_id | |
st.write(OurURL) | |
st_player(OurURL) | |
elif ("don't" in string_temp or "internet" in string_temp ): | |
st.write('*searching internet*') | |
search_internet(question) | |
else: | |
st.write(string_temp) | |