Spaces:
Runtime error
Runtime error
Update newapi.py
Browse files
newapi.py
CHANGED
@@ -5,17 +5,20 @@ import torch
|
|
5 |
from torchvision import transforms
|
6 |
from PIL import Image
|
7 |
import io
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
|
10 |
from models.TumorModel import TumorClassification, GliomaStageModel
|
11 |
from utils import get_precautions_from_gemini
|
12 |
|
13 |
-
# ✅
|
|
|
|
|
14 |
|
15 |
-
# Initialize FastAPI app
|
16 |
app = FastAPI(title="Brain Tumor Detection API")
|
17 |
|
18 |
-
# Enable CORS for
|
19 |
app.add_middleware(
|
20 |
CORSMiddleware,
|
21 |
allow_origins=["*"],
|
@@ -24,25 +27,27 @@ app.add_middleware(
|
|
24 |
allow_headers=["*"],
|
25 |
)
|
26 |
|
27 |
-
# ✅ Load Tumor Classification Model
|
28 |
btd_model_path = hf_hub_download(
|
29 |
repo_id="Codewithsalty/brain-tumor-models",
|
30 |
-
filename="BTD_model.pth"
|
|
|
31 |
)
|
32 |
tumor_model = TumorClassification()
|
33 |
tumor_model.load_state_dict(torch.load(btd_model_path, map_location="cpu"))
|
34 |
tumor_model.eval()
|
35 |
|
36 |
-
# ✅ Load Glioma Stage
|
37 |
glioma_model_path = hf_hub_download(
|
38 |
repo_id="Codewithsalty/brain-tumor-models",
|
39 |
-
filename="glioma_stages.pth"
|
|
|
40 |
)
|
41 |
glioma_model = GliomaStageModel()
|
42 |
glioma_model.load_state_dict(torch.load(glioma_model_path, map_location="cpu"))
|
43 |
glioma_model.eval()
|
44 |
|
45 |
-
# Image preprocessing
|
46 |
transform = transforms.Compose([
|
47 |
transforms.Grayscale(),
|
48 |
transforms.Resize((224, 224)),
|
@@ -50,19 +55,19 @@ transform = transforms.Compose([
|
|
50 |
transforms.Normalize(mean=[0.5], std=[0.5]),
|
51 |
])
|
52 |
|
53 |
-
# Health check
|
54 |
@app.get("/")
|
55 |
async def root():
|
56 |
return {"message": "Brain Tumor Detection API is running."}
|
57 |
|
58 |
-
# Tumor
|
59 |
labels = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
60 |
|
61 |
-
# Predict tumor type
|
62 |
@app.post("/predict-image")
|
63 |
async def predict_image(file: UploadFile = File(...)):
|
64 |
img_bytes = await file.read()
|
65 |
-
img = Image.open(io.BytesIO(img_bytes)).convert("L")
|
66 |
x = transform(img).unsqueeze(0)
|
67 |
|
68 |
with torch.no_grad():
|
@@ -76,7 +81,7 @@ async def predict_image(file: UploadFile = File(...)):
|
|
76 |
precautions = get_precautions_from_gemini(tumor_type)
|
77 |
return {"tumor_type": tumor_type, "precaution": precautions}
|
78 |
|
79 |
-
# Input
|
80 |
class MutationInput(BaseModel):
|
81 |
gender: str
|
82 |
age: float
|
@@ -88,7 +93,7 @@ class MutationInput(BaseModel):
|
|
88 |
cic: int
|
89 |
pik3ca: int
|
90 |
|
91 |
-
# Predict glioma stage
|
92 |
@app.post("/predict-glioma-stage")
|
93 |
async def predict_glioma_stage(data: MutationInput):
|
94 |
gender_val = 0 if data.gender.lower() == 'm' else 1
|
@@ -104,4 +109,7 @@ async def predict_glioma_stage(data: MutationInput):
|
|
104 |
stages = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4']
|
105 |
return {"glioma_stage": stages[idx]}
|
106 |
|
107 |
-
# ✅
|
|
|
|
|
|
|
|
5 |
from torchvision import transforms
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
+
import os
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
from models.TumorModel import TumorClassification, GliomaStageModel
|
12 |
from utils import get_precautions_from_gemini
|
13 |
|
14 |
+
# ✅ Create a writable cache directory inside the current working directory
|
15 |
+
cache_dir = os.path.join(os.getcwd(), "cache")
|
16 |
+
os.makedirs(cache_dir, exist_ok=True)
|
17 |
|
18 |
+
# ✅ Initialize FastAPI app
|
19 |
app = FastAPI(title="Brain Tumor Detection API")
|
20 |
|
21 |
+
# ✅ Enable CORS for frontend requests
|
22 |
app.add_middleware(
|
23 |
CORSMiddleware,
|
24 |
allow_origins=["*"],
|
|
|
27 |
allow_headers=["*"],
|
28 |
)
|
29 |
|
30 |
+
# ✅ Load Tumor Classification Model
|
31 |
btd_model_path = hf_hub_download(
|
32 |
repo_id="Codewithsalty/brain-tumor-models",
|
33 |
+
filename="BTD_model.pth",
|
34 |
+
cache_dir=cache_dir
|
35 |
)
|
36 |
tumor_model = TumorClassification()
|
37 |
tumor_model.load_state_dict(torch.load(btd_model_path, map_location="cpu"))
|
38 |
tumor_model.eval()
|
39 |
|
40 |
+
# ✅ Load Glioma Stage Model
|
41 |
glioma_model_path = hf_hub_download(
|
42 |
repo_id="Codewithsalty/brain-tumor-models",
|
43 |
+
filename="glioma_stages.pth",
|
44 |
+
cache_dir=cache_dir
|
45 |
)
|
46 |
glioma_model = GliomaStageModel()
|
47 |
glioma_model.load_state_dict(torch.load(glioma_model_path, map_location="cpu"))
|
48 |
glioma_model.eval()
|
49 |
|
50 |
+
# ✅ Image preprocessing steps
|
51 |
transform = transforms.Compose([
|
52 |
transforms.Grayscale(),
|
53 |
transforms.Resize((224, 224)),
|
|
|
55 |
transforms.Normalize(mean=[0.5], std=[0.5]),
|
56 |
])
|
57 |
|
58 |
+
# ✅ Health check route
|
59 |
@app.get("/")
|
60 |
async def root():
|
61 |
return {"message": "Brain Tumor Detection API is running."}
|
62 |
|
63 |
+
# ✅ Tumor labels
|
64 |
labels = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
65 |
|
66 |
+
# ✅ Predict tumor type
|
67 |
@app.post("/predict-image")
|
68 |
async def predict_image(file: UploadFile = File(...)):
|
69 |
img_bytes = await file.read()
|
70 |
+
img = Image.open(io.BytesIO(img_bytes)).convert("L")
|
71 |
x = transform(img).unsqueeze(0)
|
72 |
|
73 |
with torch.no_grad():
|
|
|
81 |
precautions = get_precautions_from_gemini(tumor_type)
|
82 |
return {"tumor_type": tumor_type, "precaution": precautions}
|
83 |
|
84 |
+
# ✅ Input format for glioma prediction
|
85 |
class MutationInput(BaseModel):
|
86 |
gender: str
|
87 |
age: float
|
|
|
93 |
cic: int
|
94 |
pik3ca: int
|
95 |
|
96 |
+
# ✅ Predict glioma stage
|
97 |
@app.post("/predict-glioma-stage")
|
98 |
async def predict_glioma_stage(data: MutationInput):
|
99 |
gender_val = 0 if data.gender.lower() == 'm' else 1
|
|
|
109 |
stages = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4']
|
110 |
return {"glioma_stage": stages[idx]}
|
111 |
|
112 |
+
# ✅ Optional: Only used when running locally (ignored on Spaces)
|
113 |
+
if __name__ == "__main__":
|
114 |
+
import uvicorn
|
115 |
+
uvicorn.run("newapi:app", host="0.0.0.0", port=10000)
|