Spaces:
Runtime error
Runtime error
Update TumorModel.py
Browse files- TumorModel.py +4 -39
TumorModel.py
CHANGED
@@ -1,48 +1,13 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
|
3 |
-
# 🧠 Tumor Type Classification Model
|
4 |
-
class TumorClassification(nn.Module):
|
5 |
-
def __init__(self):
|
6 |
-
super(TumorClassification, self).__init__()
|
7 |
-
self.con1d = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
|
8 |
-
self.relu1 = nn.ReLU()
|
9 |
-
self.pool1 = nn.MaxPool2d(2)
|
10 |
-
|
11 |
-
self.con2d = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
12 |
-
self.relu2 = nn.ReLU()
|
13 |
-
self.pool2 = nn.MaxPool2d(2)
|
14 |
-
|
15 |
-
self.con3d = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
16 |
-
self.relu3 = nn.ReLU()
|
17 |
-
self.pool3 = nn.MaxPool2d(2)
|
18 |
-
|
19 |
-
self.flatten = nn.Flatten()
|
20 |
-
self.fc1 = nn.Linear(86528, 512) # Adjust this number to match your original
|
21 |
-
self.relu_fc = nn.ReLU()
|
22 |
-
self.fc2 = nn.Linear(512, 256)
|
23 |
-
self.relu_fc2 = nn.ReLU()
|
24 |
-
self.output = nn.Linear(256, 4)
|
25 |
-
|
26 |
-
def forward(self, x):
|
27 |
-
x = self.pool1(self.relu1(self.con1d(x)))
|
28 |
-
x = self.pool2(self.relu2(self.con2d(x)))
|
29 |
-
x = self.pool3(self.relu3(self.con3d(x)))
|
30 |
-
x = self.flatten(x)
|
31 |
-
x = self.relu_fc(self.fc1(x))
|
32 |
-
x = self.relu_fc2(self.fc2(x))
|
33 |
-
return self.output(x)
|
34 |
-
|
35 |
-
# 🧬 Glioma Stage Prediction Model (MATCHES `glioma_stages.pth`)
|
36 |
class GliomaStageModel(nn.Module):
|
37 |
def __init__(self):
|
38 |
super(GliomaStageModel, self).__init__()
|
39 |
-
self.fc1 = nn.Linear(9,
|
40 |
self.relu1 = nn.ReLU()
|
41 |
-
self.fc2 = nn.Linear(
|
42 |
self.relu2 = nn.ReLU()
|
43 |
-
self.fc3 = nn.Linear(
|
44 |
self.relu3 = nn.ReLU()
|
45 |
-
self.out = nn.Linear(
|
46 |
|
47 |
def forward(self, x):
|
48 |
x = self.relu1(self.fc1(x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class GliomaStageModel(nn.Module):
|
2 |
def __init__(self):
|
3 |
super(GliomaStageModel, self).__init__()
|
4 |
+
self.fc1 = nn.Linear(9, 100)
|
5 |
self.relu1 = nn.ReLU()
|
6 |
+
self.fc2 = nn.Linear(100, 50)
|
7 |
self.relu2 = nn.ReLU()
|
8 |
+
self.fc3 = nn.Linear(50, 30)
|
9 |
self.relu3 = nn.ReLU()
|
10 |
+
self.out = nn.Linear(30, 2) # Only 2 classes in this model
|
11 |
|
12 |
def forward(self, x):
|
13 |
x = self.relu1(self.fc1(x))
|