Spaces:
Runtime error
Runtime error
File size: 6,058 Bytes
c5817c3 77980e6 c5817c3 77980e6 c5817c3 77980e6 c5817c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os, sys
import tempfile
import gradio as gr
import numpy as np
from typing import Tuple, List
# Setup and installation
os.system("git clone https://github.com/neonbjb/tortoise-tts.git")
os.system("cd tortoise-tts")
os.system("git reset --hard 8c0b3855bfb5312adf2b000b52cf5cfa2830c310")
sys.path.append("./tortoise-tts/")
os.system("pip install -r ./tortoise-tts/requirements.txt")
os.system("python ./tortoise-tts/setup.py install")
import torch
import torchaudio
import torch.nn as nn
import torch.nn.functional as F
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice
# Download and instantiate model
tts = TextToSpeech()
# Display parameters
VOICES = ["random","train_atkins","train_daws","train_dotrice","train_dreams","train_empire","train_grace","train_kennard","train_lescault","train_mouse","angie","applejack","daniel","deniro","emma","freeman","geralt","halle","jlaw","lj","mol","myself","pat","pat2","rainbow","snakes","tim_reynolds","tom","weaver","william"]
DEFAULT_VOICE = "random"
PRESETS = ["ultra_fast", "fast", "standard", "high_quality"]
DEFAULT_PRESET = "fast"
DEFAULT_TEXT = "Hello, world!"
README = """# TorToiSe
forked from https://huggingface.co/spaces/mdnestor/tortoise
Tortoise is a text-to-speech model developed by James Betker. It is capable of zero-shot voice cloning from a small set of voice samples. GitHub repo: [neonbjb/tortoise-tts](https://github.com/neonbjb/tortoise-tts).
## Usage
1. Select a model preset and type the text to speak.
2. Load a voice - either by choosing a preset, uploading audio files, or recording via microphone. Select the option to split audio into chunks if the clips are much longer than 10 seconds each. Follow the guidelines in the [voice customization guide](https://github.com/neonbjb/tortoise-tts#voice-customization-guide).
3. Click **Generate**, and wait - it's called *tortoise* for a reason!
"""
TORTOISE_SR_IN = 22050
TORTOISE_SR_OUT = 24000
def chunk_audio(t: torch.Tensor, sample_rate: int, chunk_duration_sec: int) -> List[torch.Tensor]:
duration = t.shape[1] / sample_rate
num_chunks = 1 + int(duration/chunk_duration_sec)
chunks = [t[:,(sample_rate*chunk_duration_sec*i):(sample_rate*chunk_duration_sec*(i+1))] for i in range(num_chunks)]
# remove 0-width chunks
chunks = [chunk for chunk in chunks if chunk.shape[1]>0]
return chunks
def tts_main(voice_samples: List[torch.Tensor], text: str, model_preset: str) -> str:
gen = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=None,
preset=model_preset
)
torchaudio.save("generated.wav", gen.squeeze(0).cpu(), TORTOISE_SR_OUT)
return "generated.wav"
def tts_from_preset(voice: str, text, model_preset):
voice_samples, _ = load_voice(voice)
return tts_main(voice_samples, text, model_preset)
def tts_from_files(files: List[tempfile._TemporaryFileWrapper], do_chunk, text, model_preset):
voice_samples = [load_audio(f.name, TORTOISE_SR_IN) for f in files]
if do_chunk:
voice_samples = [chunk for t in voice_samples for chunk in chunk_audio(t, TORTOISE_SR_IN, 10)]
return tts_main(voice_samples, text, model_preset)
def tts_from_recording(recording: Tuple[int, np.ndarray], do_chunk, text, model_preset):
sample_rate, audio = recording
# normalize- https://github.com/neonbjb/tortoise-tts/blob/main/tortoise/utils/audio.py#L16
norm_fix = 1
if audio.dtype == np.int32:
norm_fix = 2**31
elif audio.dtype == np.int16:
norm_fix = 2**15
audio = torch.FloatTensor(audio.T) / norm_fix
if len(audio.shape) > 1:
# convert to mono
audio = torch.mean(audio, axis=0).unsqueeze(0)
audio = torchaudio.transforms.Resample(sample_rate, TORTOISE_SR_IN)(audio)
if do_chunk:
voice_samples = chunk_audio(audio, TORTOISE_SR_IN, 10)
else:
voice_samples = [audio]
return tts_main(voice_samples, text, model_preset)
def tts_from_url(audio_url, start_time, end_time, do_chunk, text, model_preset):
os.system(f"yt-dlp -x --audio-format mp3 --force-overwrites {audio_url} -o audio.mp3")
audio = load_audio("audio.mp3", TORTOISE_SR_IN)
audio = audio[:,start_time*TORTOISE_SR_IN:end_time*TORTOISE_SR_IN]
if do_chunk:
voice_samples = chunk_audio(audio, TORTOISE_SR_IN, 10)
else:
voice_samples = [audio]
return tts_main(voice_samples, text, model_preset)
with gr.Blocks() as demo:
gr.Markdown(README)
preset = gr.Dropdown(PRESETS, label="Model preset", value=DEFAULT_PRESET)
text = gr.Textbox(label="Text to speak", value=DEFAULT_TEXT)
do_chunk_label = "Split audio into chunks? (for audio much longer than 10 seconds.)"
do_chunk_default = True
with gr.Tab("Choose preset voice"):
inp1 = gr.Dropdown(VOICES, value=DEFAULT_VOICE, label="Preset voice")
btn1 = gr.Button("Generate")
with gr.Tab("Upload audio"):
inp2 = gr.File(file_count="multiple")
do_chunk2 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
btn2 = gr.Button("Generate")
with gr.Tab("Record audio"):
inp3 = gr.Audio(source="microphone")
do_chunk3 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
btn3 = gr.Button("Generate")
# with gr.Tab("From YouTube"):
# inp4 = gr.Textbox(label="URL")
# do_chunk4 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
# start_time = gr.Number(label="Start time (seconds)", precision=0)
# end_time = gr.Number(label="End time (seconds)", precision=0)
# btn4 = gr.Button("Generate")
audio_out = gr.Audio()
btn1.click(
tts_from_preset,
[inp1, text, preset],
[audio_out],
)
btn2.click(
tts_from_files,
[inp2, do_chunk2, text, preset],
[audio_out],
)
btn3.click(
tts_from_recording,
[inp3, do_chunk3, text, preset],
[audio_out],
)
# btn4.click(
# tts_from_url,
# [inp4, start_time, end_time, do_chunk4, text, preset],
# [audio_out],
# )
demo.launch() |