conneroisu commited on
Commit
9e0b2ba
·
1 Parent(s): 0014786

secondcommit

Browse files
Files changed (1) hide show
  1. app.py +15 -16
app.py CHANGED
@@ -4,39 +4,38 @@ import numpy as np
4
  import gradio as gr
5
 
6
  gr.Interface(fn=predict,
 
7
  ),
8
- outputs=gr.outputs.Label(num_top_classes=3),
9
-
10
-
11
  def greet(name):
12
  return "Hello " + name + "!!"
13
- def predict:
 
14
 
15
  # Load the model
16
- model = load_model('keras_model.h5')
17
 
18
  # Create the array of the right shape to feed into the keras model
19
  # The 'length' or number of images you can put into the array is
20
  # determined by the first position in the shape tuple, in this case 1.
21
- data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
22
  # Replace this with the path to your image
23
-
24
- inputs=gr.inputs.Image(type="pil"
25
  # image = Image.open('<IMAGE_PATH>')
26
  #resize the image to a 224x224 with the same strategy as in TM2:
27
  #resizing the image to be at least 224x224 and then cropping from the center
28
- size = (224, 224)
29
- image = ImageOps.fit(image, size, Image.ANTIALIAS)
30
 
31
  #turn the image into a numpy array
32
- image_array = np.asarray(image)
33
  # Normalize the image
34
- normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
35
  # Load the image into the array
36
- data[0] = normalized_image_array
37
 
38
  # run the inference
39
- prediction = model.predict(data)
40
- print(prediction)
41
  iface = gr.Interface(fn=greet, inputs="text", outputs="text")
42
- iface.launch()
 
4
  import gradio as gr
5
 
6
  gr.Interface(fn=predict,
7
+ inputs=gr.inputs.Image(type="pil"
8
  ),
9
+ outputs=gr.outputs.Label(num_top_classes=2),
 
 
10
  def greet(name):
11
  return "Hello " + name + "!!"
12
+
13
+ def predict(img):
14
 
15
  # Load the model
16
+ model = load_model('keras_model.h5')
17
 
18
  # Create the array of the right shape to feed into the keras model
19
  # The 'length' or number of images you can put into the array is
20
  # determined by the first position in the shape tuple, in this case 1.
21
+ data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
22
  # Replace this with the path to your image
23
+ image = img
 
24
  # image = Image.open('<IMAGE_PATH>')
25
  #resize the image to a 224x224 with the same strategy as in TM2:
26
  #resizing the image to be at least 224x224 and then cropping from the center
27
+ size = (224, 224)
28
+ image = ImageOps.fit(image, size, Image.ANTIALIAS)
29
 
30
  #turn the image into a numpy array
31
+ image_array = np.asarray(image)
32
  # Normalize the image
33
+ normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
34
  # Load the image into the array
35
+ data[0] = normalized_image_array
36
 
37
  # run the inference
38
+ prediction = model.predict(data)
39
+ return prediction
40
  iface = gr.Interface(fn=greet, inputs="text", outputs="text")
41
+ iface.launch()