Spaces:
Runtime error
Runtime error
conneroisu
commited on
Commit
·
9e0b2ba
1
Parent(s):
0014786
secondcommit
Browse files
app.py
CHANGED
@@ -4,39 +4,38 @@ import numpy as np
|
|
4 |
import gradio as gr
|
5 |
|
6 |
gr.Interface(fn=predict,
|
|
|
7 |
),
|
8 |
-
outputs=gr.outputs.Label(num_top_classes=
|
9 |
-
|
10 |
-
|
11 |
def greet(name):
|
12 |
return "Hello " + name + "!!"
|
13 |
-
|
|
|
14 |
|
15 |
# Load the model
|
16 |
-
model = load_model('keras_model.h5')
|
17 |
|
18 |
# Create the array of the right shape to feed into the keras model
|
19 |
# The 'length' or number of images you can put into the array is
|
20 |
# determined by the first position in the shape tuple, in this case 1.
|
21 |
-
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
22 |
# Replace this with the path to your image
|
23 |
-
|
24 |
-
inputs=gr.inputs.Image(type="pil"
|
25 |
# image = Image.open('<IMAGE_PATH>')
|
26 |
#resize the image to a 224x224 with the same strategy as in TM2:
|
27 |
#resizing the image to be at least 224x224 and then cropping from the center
|
28 |
-
size = (224, 224)
|
29 |
-
image = ImageOps.fit(image, size, Image.ANTIALIAS)
|
30 |
|
31 |
#turn the image into a numpy array
|
32 |
-
image_array = np.asarray(image)
|
33 |
# Normalize the image
|
34 |
-
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
35 |
# Load the image into the array
|
36 |
-
data[0] = normalized_image_array
|
37 |
|
38 |
# run the inference
|
39 |
-
prediction = model.predict(data)
|
40 |
-
|
41 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
42 |
-
iface.launch()
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
gr.Interface(fn=predict,
|
7 |
+
inputs=gr.inputs.Image(type="pil"
|
8 |
),
|
9 |
+
outputs=gr.outputs.Label(num_top_classes=2),
|
|
|
|
|
10 |
def greet(name):
|
11 |
return "Hello " + name + "!!"
|
12 |
+
|
13 |
+
def predict(img):
|
14 |
|
15 |
# Load the model
|
16 |
+
model = load_model('keras_model.h5')
|
17 |
|
18 |
# Create the array of the right shape to feed into the keras model
|
19 |
# The 'length' or number of images you can put into the array is
|
20 |
# determined by the first position in the shape tuple, in this case 1.
|
21 |
+
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
22 |
# Replace this with the path to your image
|
23 |
+
image = img
|
|
|
24 |
# image = Image.open('<IMAGE_PATH>')
|
25 |
#resize the image to a 224x224 with the same strategy as in TM2:
|
26 |
#resizing the image to be at least 224x224 and then cropping from the center
|
27 |
+
size = (224, 224)
|
28 |
+
image = ImageOps.fit(image, size, Image.ANTIALIAS)
|
29 |
|
30 |
#turn the image into a numpy array
|
31 |
+
image_array = np.asarray(image)
|
32 |
# Normalize the image
|
33 |
+
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
34 |
# Load the image into the array
|
35 |
+
data[0] = normalized_image_array
|
36 |
|
37 |
# run the inference
|
38 |
+
prediction = model.predict(data)
|
39 |
+
return prediction
|
40 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
41 |
+
iface.launch()
|