ziv-conntour's picture
Update app.py
e77c85e verified
import gradio as gr
import cv2
import time
import openai
import base64
import pytz
import uuid
from threading import Thread
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
import json
import os
from gradio_client import Client, file
import subprocess
import ffmpeg
# Slack integration start
from slack_sdk import WebClient
from slack_sdk.errors import SlackApiError
def send_message_with_file(
title: str, filename: str, message: str, file_path: str
):
global SLACK_MESSAGES_SENT
client = WebClient(token=SLACK_BOT_TOKEN)
try:
if SLACK_MESSAGES_SENT <= 1:
response = client.files_upload_v2(
channel=SLACK_BOT_CHANNEL_ID,
initial_comment=message,
file=file_path,
title=title,
filename=filename,
)
if response.get("ok"):
print("Message with file sent successfully!")
SLACK_MESSAGES_SENT += 1
else:
print("Failed to send message with file:", response)
except SlackApiError as e:
# Handle Slack-specific errors
print(f"Slack API Error: {e.response.get('error')}")
SLACK_BOT_TOKEN = os.getenv("SLACK_BOT_TOKEN")
SLACK_BOT_CHANNEL_ID = os.getenv("SLACK_BOT_CHANNEL_ID")
# Slack integration end
api_key = os.getenv("OPEN_AI_KEY")
user_name = os.getenv("USER_NAME")
password = os.getenv("PASSWORD")
LENGTH = 3
WEBCAM = 0
MARKDOWN = """
# Conntour
"""
AVATARS = (
"https://uqnmqpvwlbpmdvutucia.supabase.co/storage/v1/object/public/test/square_padding.png?t=2024-12-26T10%3A36%3A46.488Z",
"https://media.roboflow.com/spaces/openai-white-logomark.png"
)
# VIDEO_PATH = "https://uqnmqpvwlbpmdvutucia.supabase.co/storage/v1/object/public/live-cameras/long_sf_junction.mp4?t=2025-01-14T10%3A09%3A14.826Z"
VIDEO_PATH = "long_sf_junction.mp4"
# Set your OpenAI API key
openai.api_key = api_key
MODEL="gpt-4o"
client = openai.OpenAI(api_key=api_key)
# Global variable to stop the video capture loop
stop_capture = False
alerts_mode = True
base_start_time = time.time()
SLACK_MESSAGES_SENT = 0
print("base_start_time", base_start_time)
def clip_video_segment_2(input_video_path, start_time, duration):
os.makedirs('videos', exist_ok=True)
output_video_path = f"videos/{uuid.uuid4()}.mp4"
print("clip_video_segment_2.start_time", start_time)
# Use ffmpeg-python to clip the video
try:
(
ffmpeg
.input(input_video_path, ss=start_time) # Seek to start_time
# .output(output_video_path, t=duration, c='copy') # Set the duration
.output(output_video_path, t=duration) # Set the duration
.run(overwrite_output=True)
)
print('input_video_path', input_video_path, output_video_path)
return output_video_path
except ffmpeg.Error as e:
print(f"Error clipping video: {e}")
return None
def clip_video_segment(input_video_path, start_time, duration):
os.makedirs('videos', exist_ok=True)
output_video_path = f"videos/{uuid.uuid4()}.mp4"
subprocess.call([
'ffmpeg', '-y', '-ss', str(start_time), '-i', input_video_path,
'-t', str(duration), '-c', 'copy', output_video_path
])
print('input_video_path', input_video_path, output_video_path)
return output_video_path
def encode_to_video_fast(frames, fps):
os.makedirs('videos', exist_ok=True)
video_clip_path = f"videos/{uuid.uuid4()}.mp4"
# Get frame size
height, width, layers = frames[0].shape
size = (width, height)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # You can also try 'XVID', 'MJPG', etc.
out = cv2.VideoWriter(video_clip_path, fourcc, fps, size)
for frame in frames:
out.write(frame)
out.release()
return video_clip_path
# Function to process video frames using GPT-4 API
def process_frames(frames, frames_to_skip = 1):
os.makedirs('saved_frames', exist_ok=True)
curr_frame=0
base64Frames = []
while curr_frame < len(frames) - 1:
_, buffer = cv2.imencode(".jpg", frames[curr_frame])
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
return base64Frames
# Function to check condition using GPT-4 API
def check_condition(prompt, base64Frames):
start_time = time.time()
print('checking condition for frames:', len(base64Frames))
# Save frames as images
messages = [
{"role": "system", "content": """You are analyzing video to check if the user's condition is met.
Please respond with a JSON object in the following format:
{"condition_met": true/false, "details": "optional details or summary. in the summary DON'T mention the words: image, images, frame, or frames. Instead, make it look like you were provided with video input and avoid referring to individual images or frames explicitly."}"""},
{"role": "user", "content": [prompt, *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)]}
]
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
temperature=0,
response_format={ "type": "json_object" }
)
end_time = time.time()
processing_time = end_time - start_time
frames_count = len(base64Frames)
api_response = response.choices[0].message.content
try:
jsonNew = json.loads(api_response)
print('result', response.usage.total_tokens, jsonNew)
return frames_count, processing_time, jsonNew
except:
print('result', response.usage.total_tokens, api_response)
return frames_count, processing_time, api_response
# Function to process video clip and update the chatbot
def process_clip(prompt, frames, chatbot, id):
# Print current time in Israel
israel_tz = pytz.timezone('Asia/Jerusalem')
start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
print("[Start]:", start_time, len(frames), id)
# Encode frames into a video clip
fps = int(len(frames) / LENGTH)
base64Frames = process_frames(frames, fps)
frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
if api_response["condition_met"] == True:
response_details = api_response.get('details', '')
finish_time = datetime.now(israel_tz).strftime('%H:%M:%S')
# video_clip_path = encode_to_video_fast(frames, fps)
print("process_clip id*LENGTH", id*LENGTH)
video_clip_path = clip_video_segment_2(VIDEO_PATH, id*LENGTH, LENGTH)
chatbot.append(((video_clip_path,), None))
chatbot.append((f"ID: {id}. Time: {start_time}\nDetails: {response_details}", None))
try:
message_body = f":warning: *An event for your query has been recorded!* \n*Query:* '{prompt}' \n*Event:* '{response_details}'"
send_message_with_file("Event video file", "conntour_event.mp4", message_body, video_clip_path)
except error:
print("Error sending Slack message:", error)
frame_paths = []
for i, base64_frame in enumerate(base64Frames):
frame_data = base64.b64decode(base64_frame)
frame_path = f'saved_frames/frame_{uuid.uuid4()}.jpg'
with open(frame_path, "wb") as f:
f.write(frame_data)
frame_paths.append(frame_path)
def process_clip_from_file(prompt, frames, chatbot, fps, video_path, id):
global stop_capture
if not stop_capture:
israel_tz = pytz.timezone('Asia/Jerusalem')
start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
print("[Start]:", start_time, len(frames))
frames_to_skip = int(fps)
base64Frames = process_frames(frames, frames_to_skip)
frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
result = None
if api_response and api_response.get("condition_met", False):
# video_clip_path = encode_to_video_fast(frames, fps)
video_clip_path = clip_video_segment_2(video_path, id*LENGTH, LENGTH)
chatbot.append(((video_clip_path,), None))
chatbot.append((f"Event ID: {id+1}\nDetails: {api_response.get('details', '')}", None))
yield chatbot
return chatbot
# Function to capture video frames
def analyze_stream(prompt, chatbot):
global stop_capture
global base_start_time
stop_capture = False
half_hour_in_secs = 1800 # long sf junction video length
extra_frames_because_we_love_gambling_in_casinos = 10
video_start = int(int(time.time() - base_start_time) % half_hour_in_secs) + extra_frames_because_we_love_gambling_in_casinos
# stream = "https://streamapi2.eu.loclx.io/video_feed/101"
stream = VIDEO_PATH
cap = cv2.VideoCapture(stream or WEBCAM)
fps = cap.get(cv2.CAP_PROP_FPS)
cap.set(cv2.CAP_PROP_POS_FRAMES, int(video_start*fps))
# cap.set(cv2.CAP_PROP_POS_FRAMES, int(20 * 24))
print("Video start", video_start, fps, base_start_time)
frames = []
start_time = time.time()
id = int(video_start / LENGTH)
while not stop_capture:
ret, frame = cap.read()
# if not ret:
# cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
frames.append(frame)
# Sample the frames every 5 seconds
if time.time() - start_time >= LENGTH:
# Start a new thread for processing the video clip
Thread(target=process_clip, args=(prompt, frames.copy(), chatbot, id)).start()
frames = []
start_time = time.time()
id=id+1
yield chatbot
cap.release()
return chatbot
# def analyze_stream(prompt, chatbot):
# global stop_capture
# global base_start_time
# stop_capture = False
# extra_frames = 6
# video_start = int(int(time.time() - base_start_time) % 1800)
# stream = VIDEO_PATH
# cap = cv2.VideoCapture(stream or WEBCAM)
# fps = cap.get(cv2.CAP_PROP_FPS)
# if fps <= 0:
# print("[DEBUG]: Could not find FPS")
# # Fallback, in case the FPS is reported as 0 or negative
# fps = 24.0
# # Convert `video_start` (in seconds) to frames
# start_frame = int(video_start * fps)
# print("[DEBUG]: Desired start_frame =", start_frame)
# print("[DEBUG]: Video start, fps, base_start_time =", video_start, fps, base_start_time)
# # Attempt to seek
# # success = cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
# for _ in range(start_frame):
# ret, _ = cap.read()
# # Check if seeking was actually successful by reading a frame
# ret, test_frame = cap.read()
# # if not success or not ret:
# # # If seeking failed, fall back to manual skipping
# # print(f"Direct seek to frame {start_frame} failed. Falling back to manual skipping.")
# # # Reset capture to start
# # cap.release()
# # cap = cv2.VideoCapture(stream)
# # # Skip frames manually
# # for _ in range(start_frame):
# # ret, _ = cap.read()
# # if not ret:
# # print("Failed before reaching start_frame (manual skip).")
# # break
# # # We'll use 'test_frame' from the final read below
# # ret, test_frame = cap.read()
# frames = []
# start_time = time.time()
# clip_id = video_start
# print("Starting capture from the current position now.")
# if ret and test_frame is not None:
# # We already read one frame after seeking, so store it
# frames.append(test_frame)
# while not stop_capture:
# ret, frame = cap.read()
# if not ret:
# # You could optionally try restarting if desired
# print("No more frames or read error; stopping.")
# break
# frames.append(frame)
# # Sample the frames every LENGTH seconds
# if (time.time() - start_time) >= LENGTH:
# # Start a new thread for processing the video clip
# print("analyze_stream.clip_id", clip_id)
# Thread(target=process_clip, args=(prompt, frames.copy(), chatbot, clip_id)).start()
# frames = []
# start_time = time.time()
# clip_id += 1
# # Yield to the UI or chatbot loop
# yield chatbot
# cap.release()
# return chatbot
def analyze_video_file(prompt, chatbot):
global stop_capture
stop_capture = False # Reset the stop flag when analysis starts
video_path = VIDEO_PATH
cap = cv2.VideoCapture(video_path)
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS)) # Frames per second
frames_per_chunk = fps * LENGTH # Number of frames per 5-second chunk
frames = []
chunk = 0
# Create a thread pool for concurrent processing
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
while not stop_capture:
ret, frame = cap.read()
if not ret:
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
frames.append(frame)
# Split the video into chunks of frames corresponding to 5 seconds
if len(frames) >= frames_per_chunk:
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
frames = []
chunk+=1
# If any remaining frames that are less than 5 seconds, process them as a final chunk
if len(frames) > 0:
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
chunk+=1
cap.release()
# Yield results as soon as each thread completes
for future in as_completed(futures):
result = future.result()
yield result
return chatbot
# Function to stop video capture
def stop_capture_func():
global stop_capture
global SLACK_MESSAGES_SENT
stop_capture = True
SLACK_MESSAGES_SENT = 0
def get_time():
global base_start_time
base_start_time = time.time()
print("NEW BASE TIME", base_start_time)
# Gradio interface
with gr.Blocks(title="Conntour", fill_height=True) as demo:
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS, height=700)
prompt = gr.Textbox(label="Enter your prompt alert")
start_btn = gr.Button("Start")
stop_btn = gr.Button("Stop")
start_btn.click(analyze_stream, inputs=[prompt, chatbot], outputs=[chatbot], queue=True)
stop_btn.click(stop_capture_func)
demo.load(get_time, inputs=None, outputs=None)
demo.launch(favicon_path='favicon.ico', auth=(user_name, password))