Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
cordwainersmith
commited on
Commit
•
71b342f
1
Parent(s):
277ab09
Add application file
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import streamlit as st
|
2 |
-
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
import time
|
5 |
import json
|
@@ -67,13 +66,9 @@ MODEL_DETAILS = {
|
|
67 |
class PIIMaskingModel:
|
68 |
def __init__(self, model_name: str):
|
69 |
self.model_name = model_name
|
70 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name
|
71 |
-
self.model = AutoModelForTokenClassification.from_pretrained(
|
72 |
-
|
73 |
-
)
|
74 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
75 |
-
self.model.to(self.device)
|
76 |
-
self.model.eval()
|
77 |
|
78 |
def process_text(
|
79 |
self, text: str
|
@@ -84,23 +79,23 @@ class PIIMaskingModel:
|
|
84 |
text,
|
85 |
truncation=True,
|
86 |
padding=False,
|
87 |
-
return_tensors="
|
88 |
return_offsets_mapping=True,
|
89 |
add_special_tokens=True,
|
90 |
)
|
91 |
|
92 |
-
input_ids = tokenized_inputs.input_ids
|
93 |
-
attention_mask = tokenized_inputs.attention_mask
|
94 |
offset_mapping = tokenized_inputs["offset_mapping"][0].tolist()
|
95 |
|
96 |
# Handle special tokens
|
97 |
offset_mapping[0] = None # <s> token
|
98 |
offset_mapping[-1] = None # </s> token
|
99 |
|
100 |
-
|
101 |
-
|
102 |
|
103 |
-
predictions = outputs.logits.argmax(dim=-1)
|
104 |
predicted_labels = [
|
105 |
self.model.config.id2label[label_id] for label_id in predictions[0]
|
106 |
]
|
@@ -140,7 +135,7 @@ class PIIMaskingModel:
|
|
140 |
next_label = labels[j]
|
141 |
|
142 |
# Stop if we hit a new B- tag (except for non-spaced tokens)
|
143 |
-
if next_label.startswith("B-") and tokens[j].startswith("
|
144 |
break
|
145 |
|
146 |
# Stop if we hit a different entity type in I- tags
|
@@ -152,7 +147,7 @@ class PIIMaskingModel:
|
|
152 |
last_valid_end = offset_mapping[j][1]
|
153 |
j += 1
|
154 |
# Continue if it's a non-spaced B- token
|
155 |
-
elif next_label.startswith("B-") and not tokens[j].startswith("
|
156 |
last_valid_end = offset_mapping[j][1]
|
157 |
j += 1
|
158 |
else:
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
3 |
import time
|
4 |
import json
|
|
|
66 |
class PIIMaskingModel:
|
67 |
def __init__(self, model_name: str):
|
68 |
self.model_name = model_name
|
69 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
70 |
+
self.model = AutoModelForTokenClassification.from_pretrained(model_name)
|
71 |
+
# No need to specify device as we are forcing CPU usage
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def process_text(
|
74 |
self, text: str
|
|
|
79 |
text,
|
80 |
truncation=True,
|
81 |
padding=False,
|
82 |
+
return_tensors="np", # Return NumPy arrays for CPU
|
83 |
return_offsets_mapping=True,
|
84 |
add_special_tokens=True,
|
85 |
)
|
86 |
|
87 |
+
input_ids = tokenized_inputs.input_ids
|
88 |
+
attention_mask = tokenized_inputs.attention_mask
|
89 |
offset_mapping = tokenized_inputs["offset_mapping"][0].tolist()
|
90 |
|
91 |
# Handle special tokens
|
92 |
offset_mapping[0] = None # <s> token
|
93 |
offset_mapping[-1] = None # </s> token
|
94 |
|
95 |
+
# No need for torch.no_grad() as we are not using gradients
|
96 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
97 |
|
98 |
+
predictions = outputs.logits.argmax(dim=-1) # No need to move to CPU
|
99 |
predicted_labels = [
|
100 |
self.model.config.id2label[label_id] for label_id in predictions[0]
|
101 |
]
|
|
|
135 |
next_label = labels[j]
|
136 |
|
137 |
# Stop if we hit a new B- tag (except for non-spaced tokens)
|
138 |
+
if next_label.startswith("B-") and tokens[j].startswith(" "):
|
139 |
break
|
140 |
|
141 |
# Stop if we hit a different entity type in I- tags
|
|
|
147 |
last_valid_end = offset_mapping[j][1]
|
148 |
j += 1
|
149 |
# Continue if it's a non-spaced B- token
|
150 |
+
elif next_label.startswith("B-") and not tokens[j].startswith(" "):
|
151 |
last_valid_end = offset_mapping[j][1]
|
152 |
j += 1
|
153 |
else:
|