Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,787 +2,261 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import plotly.express as px
|
5 |
-
import seaborn as sns
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
from io import StringIO
|
8 |
-
from sklearn.impute import KNNImputer, SimpleImputer
|
9 |
-
from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler, LabelEncoder, OneHotEncoder
|
10 |
-
from sklearn.decomposition import PCA
|
11 |
-
from sklearn.cluster import KMeans
|
12 |
from sklearn.model_selection import train_test_split
|
13 |
-
from
|
14 |
-
from
|
15 |
-
import
|
16 |
-
from sklearn.
|
17 |
-
from
|
18 |
-
from
|
19 |
-
from
|
20 |
-
|
21 |
-
def load_custom_css():
|
22 |
-
st.markdown("""
|
23 |
-
<style>
|
24 |
-
/* ๐ Cosmic Nebula Background */
|
25 |
-
body, .main {
|
26 |
-
background: radial-gradient(circle at top, #10002b 0%, #240046 50%, #3c096c 100%);
|
27 |
-
color: #ffffff;
|
28 |
-
font-family: 'Poppins', sans-serif;
|
29 |
-
}
|
30 |
-
/* ๐ Animated Starfield Effect */
|
31 |
-
body::before {
|
32 |
-
content: "";
|
33 |
-
position: fixed;
|
34 |
-
top: 0;
|
35 |
-
left: 0;
|
36 |
-
width: 100%;
|
37 |
-
height: 100%;
|
38 |
-
background: url('https://source.unsplash.com/random/1600x900/?stars,galaxy,nebula') center/cover no-repeat;
|
39 |
-
opacity: 0.1;
|
40 |
-
z-index: -1;
|
41 |
-
}
|
42 |
-
/* ๐ช Glassmorphism Containers */
|
43 |
-
.stContainer, .stExpander, .stDataFrame {
|
44 |
-
background: rgba(255, 255, 255, 0.08) !important;
|
45 |
-
backdrop-filter: blur(15px);
|
46 |
-
border-radius: 15px;
|
47 |
-
border: 1px solid rgba(255, 255, 255, 0.12);
|
48 |
-
padding: 1.5rem;
|
49 |
-
box-shadow: 0 10px 30px rgba(255, 255, 255, 0.12);
|
50 |
-
}
|
51 |
-
/* ๐ฎ Cyberpunk Buttons */
|
52 |
-
.stButton>button {
|
53 |
-
background: linear-gradient(90deg, #ff00ff, #00ffff);
|
54 |
-
color: white !important;
|
55 |
-
border: none;
|
56 |
-
border-radius: 12px;
|
57 |
-
padding: 0.8rem 1.5rem;
|
58 |
-
font-weight: bold;
|
59 |
-
letter-spacing: 0.05rem;
|
60 |
-
transition: all 0.4s ease;
|
61 |
-
text-transform: uppercase;
|
62 |
-
width: 100%;
|
63 |
-
}
|
64 |
-
.stButton>button:hover {
|
65 |
-
transform: scale(1.05);
|
66 |
-
box-shadow: 0 0 20px rgba(0, 255, 255, 0.8);
|
67 |
-
}
|
68 |
-
/* ๐ Neon Headers */
|
69 |
-
h1, h2, h3, h4, h5, h6 {
|
70 |
-
font-weight: bold;
|
71 |
-
text-transform: uppercase;
|
72 |
-
text-shadow: 0 0 10px rgba(0, 255, 255, 0.6);
|
73 |
-
color: #00ffff;
|
74 |
-
padding: 0.5rem 0;
|
75 |
-
}
|
76 |
-
/* ๐ Interactive Inputs */
|
77 |
-
.stTextInput>div>div>input,
|
78 |
-
.stSelectbox>div>div>div,
|
79 |
-
.stSlider>div>div>div {
|
80 |
-
background: rgba(0, 0, 0, 0.5) !important;
|
81 |
-
border-radius: 10px !important;
|
82 |
-
padding: 0.75rem !important;
|
83 |
-
color: white !important;
|
84 |
-
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
85 |
-
transition: all 0.3s ease;
|
86 |
-
}
|
87 |
-
.stTextInput>div>div>input:focus,
|
88 |
-
.stSelectbox>div>div>div:hover {
|
89 |
-
border-color: #ff00ff !important;
|
90 |
-
box-shadow: 0 0 12px rgba(255, 0, 255, 0.6);
|
91 |
-
}
|
92 |
-
/* ๐ญ Data Grid Styling */
|
93 |
-
[data-testid="stDataFrame"] {
|
94 |
-
border: 1px solid rgba(255, 255, 255, 0.2);
|
95 |
-
border-radius: 10px;
|
96 |
-
background: rgba(255, 255, 255, 0.05);
|
97 |
-
padding: 1rem;
|
98 |
-
color: white !important;
|
99 |
-
}
|
100 |
-
/* ๐ Graph Enhancements */
|
101 |
-
.stPlotlyChart, .stPydeckChart {
|
102 |
-
border-radius: 15px;
|
103 |
-
border: 1px solid rgba(255, 255, 255, 0.1);
|
104 |
-
padding: 1rem;
|
105 |
-
box-shadow: 0 8px 20px rgba(255, 255, 255, 0.15);
|
106 |
-
}
|
107 |
-
/* ๐๏ธ Consistent Spacing */
|
108 |
-
.stContainer > *,
|
109 |
-
.stExpander > * {
|
110 |
-
margin: 1rem 0;
|
111 |
-
}
|
112 |
-
/* ๐ Futuristic Scrollbars */
|
113 |
-
::-webkit-scrollbar {
|
114 |
-
width: 8px;
|
115 |
-
height: 8px;
|
116 |
-
}
|
117 |
-
::-webkit-scrollbar-track {
|
118 |
-
background: rgba(25, 25, 45, 0.5);
|
119 |
-
}
|
120 |
-
::-webkit-scrollbar-thumb {
|
121 |
-
background: linear-gradient(180deg, #ff00ff, #00ffff);
|
122 |
-
border-radius: 4px;
|
123 |
-
box-shadow: 0 0 10px rgba(255, 255, 255, 0.3);
|
124 |
-
}
|
125 |
-
/* โจ Smooth Animations */
|
126 |
-
* {
|
127 |
-
transition: all 0.25s ease-in-out;
|
128 |
-
}
|
129 |
-
</style>
|
130 |
-
""", unsafe_allow_html=True)
|
131 |
-
|
132 |
-
load_custom_css()
|
133 |
-
|
134 |
|
|
|
|
|
135 |
|
136 |
-
#
|
137 |
-
# ================== ๐น CACHED FUNCTIONS ==================
|
138 |
@st.cache_data(ttl=3600)
|
139 |
-
def
|
140 |
-
"""
|
141 |
-
if
|
142 |
-
return
|
143 |
-
|
144 |
-
"median": df[column].median(),
|
145 |
-
"std": df[column].std(),
|
146 |
-
"min": df[column].min(),
|
147 |
-
"max": df[column].max()
|
148 |
-
}
|
149 |
-
else:
|
150 |
-
return {
|
151 |
-
"unique_values": df[column].nunique(),
|
152 |
-
"most_common": df[column].mode()[0]
|
153 |
-
}
|
154 |
|
155 |
@st.cache_data(ttl=3600)
|
156 |
-
def
|
157 |
-
"""Generate
|
158 |
-
|
159 |
-
return px.histogram(df, x=x_col, nbins=30, title=f"Distribution of {x_col}",
|
160 |
-
color_discrete_sequence=['#00cc96'], template="plotly_dark")
|
161 |
-
elif chart_type == "Box Plot":
|
162 |
-
return px.box(df, y=x_col, title=f"Box Plot of {x_col}",
|
163 |
-
color_discrete_sequence=['#ff7f0e'], template="plotly_dark")
|
164 |
-
elif chart_type == "Violin Plot":
|
165 |
-
return px.violin(df, y=x_col, title=f"Violin Plot of {x_col}",
|
166 |
-
color_discrete_sequence=['#9467bd'], template="plotly_dark")
|
167 |
-
elif chart_type == "Scatter Plot":
|
168 |
-
return px.scatter(df, x=x_col, y=y_col, title=f"{x_col} vs {y_col}",
|
169 |
-
color_discrete_sequence=['#1f77b4'], template="plotly_dark")
|
170 |
-
elif chart_type == "3D Scatter":
|
171 |
-
return px.scatter_3d(df, x=x_col, y=y_col, z=z_col,
|
172 |
-
title=f"3D Analysis: {x_col} vs {y_col} vs {z_col}",
|
173 |
-
color_discrete_sequence=['#2ca02c'], template="plotly_dark")
|
174 |
-
elif chart_type == "Heatmap":
|
175 |
-
corr_matrix = df[[x_col, y_col]].corr()
|
176 |
-
return px.imshow(corr_matrix, text_auto=True, title="Correlation Heatmap",
|
177 |
-
color_continuous_scale='Viridis', template="plotly_dark")
|
178 |
-
|
179 |
-
# ================== ๐น LAZY-LOADING COMPONENTS ==================
|
180 |
-
def lazy_load_chart(df, chart_type, x_col, y_col=None):
|
181 |
-
"""Lazy-load a chart with a spinner."""
|
182 |
-
with st.spinner(f"Generating {chart_type}..."):
|
183 |
-
return generate_chart(df, chart_type, x_col, y_col)
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
if 'df' not in st.session_state:
|
193 |
-
st.session_state.df = None
|
194 |
-
if 'cleaned_df' not in st.session_state:
|
195 |
-
st.session_state.cleaned_df = None
|
196 |
-
if 'X_train' not in st.session_state:
|
197 |
-
st.session_state.X_train = None
|
198 |
-
if 'X_test' not in st.session_state:
|
199 |
-
st.session_state.X_test = None
|
200 |
-
if 'y_train' not in st.session_state:
|
201 |
-
st.session_state.y_train = None
|
202 |
-
if 'y_test' not in st.session_state:
|
203 |
-
st.session_state.y_test = None
|
204 |
if 'model' not in st.session_state:
|
205 |
st.session_state.model = None
|
206 |
|
207 |
-
#
|
208 |
-
st.sidebar.title("
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
st.success("Dataset cleared from memory!")
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
st.
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
uploaded_file = st.file_uploader("Upload Dataset", type=["csv", "xlsx"],
|
238 |
-
help="Drag and drop your dataset file here")
|
239 |
-
|
240 |
-
if uploaded_file:
|
241 |
-
df = pd.read_csv(uploaded_file) if uploaded_file.name.endswith('.csv') else pd.read_excel(uploaded_file)
|
242 |
-
st.session_state.df = df
|
243 |
-
st.session_state.cleaned_df = df.copy()
|
244 |
-
st.success("โ
Data uploaded successfully!")
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
df = st.session_state.df
|
249 |
|
250 |
-
#
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
st.markdown("### โ ๏ธ Data Issues")
|
261 |
-
st.markdown(f"**{df.isnull().sum().sum()}** Missing Values | **{df.duplicated().sum()}** Duplicates")
|
262 |
-
|
263 |
-
with col3:
|
264 |
-
with st.container():
|
265 |
-
st.markdown("### ๐งฌ Data Types")
|
266 |
-
num_cols = len(df.select_dtypes(include=np.number).columns)
|
267 |
-
cat_cols = len(df.select_dtypes(include=['object']).columns)
|
268 |
-
st.markdown(f"**{num_cols}** Numerical | **{cat_cols}** Categorical")
|
269 |
-
|
270 |
-
# Automated Data Report
|
271 |
-
with st.expander("๐ Automated Data Report", expanded=True):
|
272 |
-
if st.button("โจ Generate Smart Report"):
|
273 |
-
with st.spinner("๐ Analyzing dataset..."):
|
274 |
-
# Configure minimal report
|
275 |
-
config = Settings()
|
276 |
-
config.title = " "
|
277 |
-
config.variables.descriptions = False
|
278 |
-
config.show_variable_description = False
|
279 |
-
config.samples.head = 0
|
280 |
-
config.samples.tail = 0
|
281 |
-
|
282 |
-
# Generate report with dark mode
|
283 |
-
profile = ProfileReport(
|
284 |
-
df,
|
285 |
-
config=config,
|
286 |
-
minimal=True,
|
287 |
-
)
|
288 |
-
|
289 |
-
# Apply custom color scheme
|
290 |
-
report_html = profile.to_html()
|
291 |
-
report_html = report_html.replace(
|
292 |
-
':root {',
|
293 |
-
':root { --primary-color: #00f7ff; --secondary-color: #0066ff;'
|
294 |
-
)
|
295 |
-
report_html = report_html.replace('<h1', '<h1 style="display:none"')
|
296 |
-
|
297 |
-
st.components.v1.html(report_html, height=800, scrolling=True)
|
298 |
-
|
299 |
-
# Interactive Data Explorer
|
300 |
-
st.subheader("๐ Data Explorer")
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
st.dataframe(df.head().style.highlight_null(color='#FF6666'), use_container_width=True)
|
310 |
-
elif sample_type == "Last 5 Rows":
|
311 |
-
st.dataframe(df.tail().style.highlight_null(color='#FF6666'), use_container_width=True)
|
312 |
-
else:
|
313 |
-
sample_size = st.slider("Sample Size", 5, min(100, len(df)), 10)
|
314 |
-
st.dataframe(df.sample(sample_size).style.highlight_null(color='#FF6666'), use_container_width=True)
|
315 |
-
|
316 |
-
# Column Analysis
|
317 |
-
with st.expander("๐ Column Insights", expanded=True):
|
318 |
-
col1, col2 = st.columns(2)
|
319 |
-
with col1:
|
320 |
-
selected_col = st.selectbox("Select Column", df.columns)
|
321 |
-
|
322 |
-
if pd.api.types.is_numeric_dtype(df[selected_col]):
|
323 |
-
fig = px.histogram(df, x=selected_col,
|
324 |
-
title=f"Distribution of {selected_col}",
|
325 |
-
color_discrete_sequence=['#00f7ff'])
|
326 |
-
st.plotly_chart(fig, use_container_width=True)
|
327 |
-
else:
|
328 |
-
value_counts = df[selected_col].value_counts().nlargest(10)
|
329 |
-
fig = px.bar(value_counts,
|
330 |
-
title=f"Top 10 Values in {selected_col}",
|
331 |
-
color_discrete_sequence=['#0066ff'])
|
332 |
-
st.plotly_chart(fig, use_container_width=True)
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
with tab1:
|
350 |
-
buffer = StringIO()
|
351 |
-
df.info(buf=buffer)
|
352 |
-
st.text(buffer.getvalue())
|
353 |
-
|
354 |
-
with tab2:
|
355 |
-
st.write(df.describe().style.background_gradient(cmap='Blues'))
|
356 |
-
|
357 |
-
with tab3:
|
358 |
-
st.markdown("### Automated Insights")
|
359 |
-
if st.button("๐ฎ Generate AI-Powered Insights"):
|
360 |
-
with st.spinner("๐ค Analyzing patterns..."):
|
361 |
-
profile = ProfileReport(df, minimal=True)
|
362 |
-
st.write(profile.to_html(), unsafe_allow_html=True)
|
363 |
|
364 |
-
#
|
365 |
-
elif
|
366 |
-
st.
|
367 |
|
368 |
-
if st.session_state.
|
369 |
-
df = st.session_state.
|
370 |
|
371 |
-
#
|
372 |
-
st.
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
'Metric': ['Missing Values', 'Duplicate Rows',
|
380 |
-
'Zero Variance', 'Data Leakage Risk'],
|
381 |
-
'Value': [
|
382 |
-
f"{df.isnull().sum().sum()} ({df.isnull().mean().mean():.1%})",
|
383 |
-
df.duplicated().sum(),
|
384 |
-
df[numeric_cols].std()[df[numeric_cols].std() == 0].count(),
|
385 |
-
"High" if df.skew().abs().max() > 5 else "Low"
|
386 |
-
],
|
387 |
-
'Severity': ['Critical' if df.isnull().sum().sum() > 0 else 'OK',
|
388 |
-
'Warning' if df.duplicated().sum() > 0 else 'OK',
|
389 |
-
'Critical' if df[numeric_cols].std()[df[numeric_cols].std() == 0].count() > 0 else 'OK',
|
390 |
-
'Warning' if df.skew().abs().max() > 5 else 'OK']
|
391 |
-
})
|
392 |
-
|
393 |
-
# Visualize data health
|
394 |
-
fig = px.bar(diagnosis, x='Metric', y='Value', color='Severity',
|
395 |
-
color_discrete_map={'Critical':'#ff2b2b','Warning':'#f0c929','OK':'#00ff87'},
|
396 |
-
template="plotly_dark")
|
397 |
-
st.plotly_chart(fig, use_container_width=True)
|
398 |
-
|
399 |
-
except Exception as e:
|
400 |
-
st.error(f"Diagnostic failed: {str(e)}")
|
401 |
-
|
402 |
-
# Professional-Grade Cleaning Tools
|
403 |
-
st.subheader("๐ง Enterprise Cleaning Toolkit")
|
404 |
-
tab1, tab2, tab3, tab4 = st.tabs(["๐งฉ Missing Data", "๐ Normalization", "๐ Outliers", "๐ Encoding"])
|
405 |
|
406 |
-
|
407 |
-
|
408 |
-
with cols[0]:
|
409 |
-
imp_method = st.selectbox("Imputation Strategy",
|
410 |
-
["ML Impute (Iterative)", "KNN", "MICE", "Matrix Factorization"],
|
411 |
-
help="Select advanced imputation technique")
|
412 |
-
if imp_method == "KNN":
|
413 |
-
n_neighbors = st.slider("Neighbors", 3, 15, 5, help="Number of similar records to consider")
|
414 |
-
with cols[1]:
|
415 |
-
if st.button("Execute Smart Imputation", type="primary"):
|
416 |
-
with st.spinner(f"โ๏ธ Running {imp_method}..."):
|
417 |
-
# Advanced imputation logic
|
418 |
-
numeric_cols = df.select_dtypes(include=np.number).columns
|
419 |
-
if imp_method == "KNN":
|
420 |
-
imputer = KNNImputer(n_neighbors=n_neighbors)
|
421 |
-
df[numeric_cols] = imputer.fit_transform(df[numeric_cols])
|
422 |
-
else:
|
423 |
-
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].median())
|
424 |
-
st.session_state.cleaned_df = df
|
425 |
-
st.toast("Imputation complete!", icon="โ
")
|
426 |
-
|
427 |
-
with tab2:
|
428 |
-
cols = st.columns([1,3])
|
429 |
-
with cols[0]:
|
430 |
-
scale_method = st.selectbox("Scaling Algorithm",
|
431 |
-
["Robust Scaling", "Quantum Normalization",
|
432 |
-
"Adaptive MinMax", "Power Transform"],
|
433 |
-
index=0)
|
434 |
-
if scale_method == "Power Transform":
|
435 |
-
lambda_val = st.slider("Lambda Parameter", -3.0, 3.0, 0.0)
|
436 |
-
with cols[1]:
|
437 |
-
if st.button("Apply Feature Engineering", type="primary"):
|
438 |
-
with st.spinner("Transforming features..."):
|
439 |
-
# Advanced scaling logic
|
440 |
-
numeric_cols = df.select_dtypes(include=np.number).columns
|
441 |
-
if scale_method == "Robust Scaling":
|
442 |
-
scaler = RobustScaler()
|
443 |
-
df[numeric_cols] = scaler.fit_transform(df[numeric_cols])
|
444 |
-
st.session_state.cleaned_df = df
|
445 |
-
st.toast("Features transformed!", icon="โ
")
|
446 |
-
|
447 |
-
# Real-time Data Diff Viewer
|
448 |
-
st.subheader("๐ Version Comparison")
|
449 |
-
cols = st.columns(2)
|
450 |
with cols[0]:
|
451 |
-
st.
|
452 |
-
st.dataframe(st.session_state.df.head(3).style.highlight_null(color='#ff2b2b'))
|
453 |
with cols[1]:
|
454 |
-
st.
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
horizontal=True,
|
470 |
-
help="Select the type of analysis you want to perform"
|
471 |
-
)
|
472 |
-
|
473 |
-
# Dynamic Column Selection Based on Analysis Type
|
474 |
-
if analysis_type == "Single Variable":
|
475 |
-
selected_columns = st.multiselect(
|
476 |
-
"Select Columns for Analysis",
|
477 |
-
df.columns,
|
478 |
-
default=df.columns[:1],
|
479 |
-
help="Choose one or more columns for single-variable analysis"
|
480 |
-
)
|
481 |
-
chart_type = st.selectbox(
|
482 |
-
"Select Chart Type",
|
483 |
-
["Auto-Detect", "Histogram", "Box Plot", "Violin Plot"]
|
484 |
-
)
|
485 |
-
|
486 |
-
elif analysis_type == "Multi-Variable":
|
487 |
-
selected_columns = st.multiselect(
|
488 |
-
"Select Columns for Analysis",
|
489 |
-
df.columns,
|
490 |
-
default=df.columns[:2],
|
491 |
-
help="Choose two or more columns for multi-variable analysis"
|
492 |
-
)
|
493 |
-
chart_type = st.selectbox(
|
494 |
-
"Select Chart Type",
|
495 |
-
["Auto-Detect", "Scatter Plot", "Heatmap", "Box Plot", "Violin Plot"]
|
496 |
-
)
|
497 |
|
498 |
-
|
499 |
-
col1, col2, col3 = st.columns(3)
|
500 |
-
with col1:
|
501 |
-
x_col = st.selectbox("X Axis", df.columns)
|
502 |
-
with col2:
|
503 |
-
y_col = st.selectbox("Y Axis", df.columns)
|
504 |
-
with col3:
|
505 |
-
z_col = st.selectbox("Z Axis", df.columns)
|
506 |
-
chart_type = "3D Scatter"
|
507 |
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
try:
|
512 |
-
# Auto-Detect Logic
|
513 |
-
if chart_type == "Auto-Detect":
|
514 |
-
if analysis_type == "Single Variable":
|
515 |
-
if pd.api.types.is_numeric_dtype(df[selected_columns[0]]):
|
516 |
-
chart_type = "Histogram"
|
517 |
-
else:
|
518 |
-
chart_type = "Bar Chart"
|
519 |
-
|
520 |
-
elif analysis_type == "Multi-Variable":
|
521 |
-
if all(pd.api.types.is_numeric_dtype(df[col]) for col in selected_columns[:2]):
|
522 |
-
chart_type = "Scatter Plot"
|
523 |
-
else:
|
524 |
-
chart_type = "Box Plot"
|
525 |
-
|
526 |
-
# Generate Visualization
|
527 |
-
if analysis_type == "Single Variable":
|
528 |
-
col = selected_columns[0]
|
529 |
-
fig = generate_chart(df, chart_type, col)
|
530 |
-
stats = calculate_statistics(df, col)
|
531 |
-
|
532 |
-
# Display results
|
533 |
-
col1, col2 = st.columns([2, 1])
|
534 |
-
with col1:
|
535 |
-
st.plotly_chart(fig, use_container_width=True)
|
536 |
-
with col2:
|
537 |
-
st.subheader("๐ Key Insights")
|
538 |
-
if pd.api.types.is_numeric_dtype(df[col]):
|
539 |
-
st.metric("Mean", f"{stats['mean']:.2f}")
|
540 |
-
st.metric("Median", f"{stats['median']:.2f}")
|
541 |
-
st.metric("Std Dev", f"{stats['std']:.2f}")
|
542 |
-
else:
|
543 |
-
st.metric("Unique Values", stats['unique_values'])
|
544 |
-
st.metric("Most Common", stats['most_common'])
|
545 |
-
|
546 |
-
elif analysis_type == "Multi-Variable":
|
547 |
-
if len(selected_columns) < 2:
|
548 |
-
st.warning("Please select at least two columns")
|
549 |
-
else:
|
550 |
-
fig = generate_chart(df, chart_type, selected_columns[0], selected_columns[1])
|
551 |
-
st.plotly_chart(fig, use_container_width=True)
|
552 |
-
|
553 |
-
# Correlation insights
|
554 |
-
if chart_type in ["Scatter Plot", "Heatmap"]:
|
555 |
-
st.subheader("๐ Correlation Insights")
|
556 |
-
try:
|
557 |
-
corr = df[selected_columns[0]].corr(df[selected_columns[1]])
|
558 |
-
st.write(f"**Correlation Coefficient:** {corr:.2f}")
|
559 |
-
st.progress(abs(corr))
|
560 |
-
st.caption("Absolute correlation strength")
|
561 |
-
except:
|
562 |
-
st.warning("Could not calculate correlation for selected columns")
|
563 |
-
|
564 |
-
elif analysis_type == "3D Analysis":
|
565 |
-
fig = generate_chart(df, "3D Scatter", x_col, y_col, z_col)
|
566 |
-
st.plotly_chart(fig, use_container_width=True)
|
567 |
-
|
568 |
-
# 3D Analysis Insights
|
569 |
-
st.subheader("๐ 3D Analysis Insights")
|
570 |
-
col1, col2, col3 = st.columns(3)
|
571 |
-
with col1:
|
572 |
-
st.metric("X Range", f"{df[x_col].min():.2f} - {df[x_col].max():.2f}")
|
573 |
-
with col2:
|
574 |
-
st.metric("Y Range", f"{df[y_col].min():.2f} - {df[y_col].max():.2f}")
|
575 |
-
with col3:
|
576 |
-
st.metric("Z Range", f"{df[z_col].min():.2f} - {df[z_col].max():.2f}")
|
577 |
-
|
578 |
-
except Exception as e:
|
579 |
-
st.error(f"Visualization error: {str(e)}")
|
580 |
-
# ================== ๐น PRODUCTION-GRADE ML SECTION ==================
|
581 |
-
elif choice == "Machine Learning":
|
582 |
-
st.header("๐ค Enterprise ML Studio")
|
583 |
|
584 |
-
if st.session_state.
|
585 |
-
df = st.session_state.
|
586 |
|
587 |
-
# Model
|
588 |
-
st.
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
best_model = compare_models(n_select=3)
|
600 |
-
|
601 |
-
# Visual Leaderboard
|
602 |
-
results = pull()
|
603 |
-
fig = px.bar(results, x='Model', y=['Accuracy', 'AUC'],
|
604 |
-
barmode='group', template="plotly_dark",
|
605 |
-
title="Model Performance Leaderboard")
|
606 |
-
st.plotly_chart(fig, use_container_width=True)
|
607 |
-
|
608 |
-
except Exception as e:
|
609 |
-
st.error(f"AutoML failed: {str(e)}")
|
610 |
-
# ================== ๐น PREDICTIONS PAGE COMPLETION ==================
|
611 |
-
elif choice == "Predictions":
|
612 |
-
st.title("๐ฎ Make Predictions on New Data")
|
613 |
-
|
614 |
-
if st.session_state.get("model"):
|
615 |
-
uploaded_file = st.file_uploader("Upload New Data for Prediction", type=["csv", "xlsx"])
|
616 |
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
try:
|
623 |
-
predictions = st.session_state.model.predict(new_data)
|
624 |
-
proba = st.session_state.model.predict_proba(new_data) if hasattr(st.session_state.model, 'predict_proba') else None
|
625 |
-
|
626 |
-
st.subheader("๐ข Predictions:")
|
627 |
-
result_df = pd.DataFrame({
|
628 |
-
'Prediction': predictions,
|
629 |
-
'Confidence': proba.max(axis=1) if proba is not None else [1.0]*len(predictions)
|
630 |
-
})
|
631 |
-
st.dataframe(result_df.style.background_gradient(cmap='Blues'))
|
632 |
|
633 |
-
|
634 |
-
|
635 |
-
st.download_button(
|
636 |
-
label="๐ฅ Download Predictions",
|
637 |
-
data=csv,
|
638 |
-
file_name='predictions.csv',
|
639 |
-
mime='text/csv'
|
640 |
)
|
641 |
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
646 |
|
647 |
-
#
|
648 |
-
|
649 |
-
|
650 |
-
st.header("๐ Advanced Visualization Lab")
|
651 |
|
652 |
-
if st.session_state.
|
653 |
-
|
654 |
|
655 |
-
#
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
# Auto-detect visualization types
|
665 |
-
if len(numeric_cols) >= 3:
|
666 |
-
st.session_state.viz_type = "3D Scatter"
|
667 |
-
elif len(cat_cols) > 0:
|
668 |
-
st.session_state.viz_type = "Pie"
|
669 |
-
else:
|
670 |
-
st.session_state.viz_type = "Histogram"
|
671 |
-
|
672 |
-
st.success(f"Recommended visualization type: {st.session_state.viz_type}")
|
673 |
-
|
674 |
-
except Exception as e:
|
675 |
-
st.error(f"Recommendation failed: {str(e)}")
|
676 |
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
# Bar Chart
|
711 |
-
elif plot_type == "Bar":
|
712 |
-
with col1:
|
713 |
-
x_axis = st.selectbox("X Axis", df.columns, index=0)
|
714 |
-
with col2:
|
715 |
-
y_axis = st.selectbox("Y Axis", df.select_dtypes(include=np.number).columns.tolist())
|
716 |
-
with col3:
|
717 |
-
color_by = st.selectbox("Color By", [None] + df.columns.tolist())
|
718 |
-
fig = px.bar(df, x=x_axis, y=y_axis, color=color_by, barmode='group')
|
719 |
-
|
720 |
-
# Pie Chart
|
721 |
-
elif plot_type == "Pie":
|
722 |
-
with col1:
|
723 |
-
names = st.selectbox("Categories", df.select_dtypes(include=['object', 'category']).columns.tolist())
|
724 |
-
with col2:
|
725 |
-
values = st.selectbox("Values", df.select_dtypes(include=np.number).columns.tolist())
|
726 |
-
fig = px.pie(df, names=names, values=values, hole=0.3)
|
727 |
-
|
728 |
-
# Histogram
|
729 |
-
elif plot_type == "Histogram":
|
730 |
-
with col1:
|
731 |
-
num_col = st.selectbox("Numerical Column", df.select_dtypes(include=np.number).columns.tolist())
|
732 |
-
with col2:
|
733 |
-
color_by = st.selectbox("Split By", [None] + df.columns.tolist())
|
734 |
-
fig = px.histogram(df, x=num_col, color=color_by, marginal="rug",
|
735 |
-
nbins=st.slider("Number of Bins", 5, 100, 20))
|
736 |
-
|
737 |
-
# Box Plot
|
738 |
-
elif plot_type == "Box":
|
739 |
-
with col1:
|
740 |
-
y_axis = st.selectbox("Y Axis", df.select_dtypes(include=np.number).columns.tolist())
|
741 |
-
with col2:
|
742 |
-
x_axis = st.selectbox("X Axis (Optional)", [None] + df.columns.tolist())
|
743 |
-
fig = px.box(df, x=x_axis, y=y_axis, color=x_axis)
|
744 |
-
|
745 |
-
# Violin Plot
|
746 |
-
elif plot_type == "Violin":
|
747 |
-
with col1:
|
748 |
-
y_axis = st.selectbox("Y Axis", df.select_dtypes(include=np.number).columns.tolist())
|
749 |
-
with col2:
|
750 |
-
x_axis = st.selectbox("X Axis (Optional)", [None] + df.columns.tolist())
|
751 |
-
fig = px.violin(df, x=x_axis, y=y_axis, color=x_axis, box=True)
|
752 |
-
|
753 |
-
# Heatmap
|
754 |
-
elif plot_type == "Heatmap":
|
755 |
-
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
756 |
-
selected_cols = st.multiselect("Select Numerical Columns", numeric_cols, default=numeric_cols[:5])
|
757 |
-
if len(selected_cols) >= 2:
|
758 |
-
corr_matrix = df[selected_cols].corr()
|
759 |
-
fig = px.imshow(corr_matrix, text_auto=True,
|
760 |
-
color_continuous_scale=px.colors.diverging.RdBu_r)
|
761 |
-
else:
|
762 |
-
st.warning("Select at least 2 numerical columns for heatmap")
|
763 |
-
|
764 |
-
# Plot Customization
|
765 |
-
if fig:
|
766 |
-
with st.expander("๐ญ Style Customization"):
|
767 |
-
col1, col2 = st.columns(2)
|
768 |
-
with col1:
|
769 |
-
color_theme = st.selectbox("Color Theme", px.colors.named_colorscales(),
|
770 |
-
index=px.colors.named_colorscales().index('Viridis'))
|
771 |
-
fig.update_layout(colorway=px.colors.sequential[color_theme])
|
772 |
-
with col2:
|
773 |
-
fig.update_layout(
|
774 |
-
template=st.selectbox("Theme Style", ["plotly", "plotly_dark", "ggplot2", "seaborn"]),
|
775 |
-
font_size=st.slider("Font Size", 10, 24, 14)
|
776 |
-
)
|
777 |
-
|
778 |
-
# Display Plot
|
779 |
-
st.plotly_chart(fig, use_container_width=True)
|
780 |
-
|
781 |
-
# Download Button
|
782 |
-
plot_html = fig.to_html()
|
783 |
-
st.download_button(
|
784 |
-
label="๐ฅ Download Plot",
|
785 |
-
data=plot_html,
|
786 |
-
file_name=f"{plot_type.replace(' ', '_')}_plot.html",
|
787 |
-
mime="text/html"
|
788 |
-
)
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import plotly.express as px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.linear_model import LinearRegression
|
7 |
+
from sklearn.tree import DecisionTreeRegressor
|
8 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
9 |
+
from sklearn.impute import KNNImputer
|
10 |
+
from sklearn.preprocessing import RobustScaler
|
11 |
+
from pandas_profiling import ProfileReport
|
12 |
+
from streamlit_pandas_profiling import st_profile_report
|
13 |
+
from io import StringIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Configuration
|
16 |
+
st.set_page_config(page_title="Data Wizard Pro", layout="wide", page_icon="๐ง")
|
17 |
|
18 |
+
# Cache decorators
|
|
|
19 |
@st.cache_data(ttl=3600)
|
20 |
+
def load_data(uploaded_file):
|
21 |
+
"""Load and cache dataset"""
|
22 |
+
if uploaded_file.name.endswith('.csv'):
|
23 |
+
return pd.read_csv(uploaded_file)
|
24 |
+
return pd.read_excel(uploaded_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
@st.cache_data(ttl=3600)
|
27 |
+
def generate_profile(df):
|
28 |
+
"""Generate automated EDA report"""
|
29 |
+
return ProfileReport(df, minimal=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Session State Management
|
32 |
+
if 'raw_data' not in st.session_state:
|
33 |
+
st.session_state.raw_data = None
|
34 |
+
if 'cleaned_data' not in st.session_state:
|
35 |
+
st.session_state.cleaned_data = None
|
36 |
+
if 'train_test' not in st.session_state:
|
37 |
+
st.session_state.train_test = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
if 'model' not in st.session_state:
|
39 |
st.session_state.model = None
|
40 |
|
41 |
+
# Sidebar Navigation
|
42 |
+
st.sidebar.title("๐ฎ Data Wizard Pro")
|
43 |
+
app_mode = st.sidebar.radio("Navigate", [
|
44 |
+
"Data Upload",
|
45 |
+
"Smart Cleaning",
|
46 |
+
"Advanced EDA",
|
47 |
+
"Model Training",
|
48 |
+
"Predictions",
|
49 |
+
"Visualization Lab"
|
50 |
+
])
|
51 |
+
|
52 |
+
# Data Upload Section
|
53 |
+
if app_mode == "Data Upload":
|
54 |
+
st.title("๐ค Data Upload & Analysis")
|
|
|
55 |
|
56 |
+
uploaded_file = st.file_uploader("Upload Dataset", type=["csv", "xlsx"])
|
57 |
+
if uploaded_file:
|
58 |
+
df = load_data(uploaded_file)
|
59 |
+
st.session_state.raw_data = df
|
60 |
+
st.session_state.cleaned_data = df.copy()
|
61 |
|
62 |
+
# Data Overview Cards
|
63 |
+
col1, col2, col3 = st.columns(3)
|
64 |
+
with col1:
|
65 |
+
st.metric("Rows", df.shape[0])
|
66 |
+
with col2:
|
67 |
+
st.metric("Columns", df.shape[1])
|
68 |
+
with col3:
|
69 |
+
st.metric("Missing Values", df.isna().sum().sum())
|
70 |
+
|
71 |
+
# Automated EDA Report
|
72 |
+
with st.expander("๐ Automated Data Report"):
|
73 |
+
if st.button("Generate Smart Report"):
|
74 |
+
pr = generate_profile(df)
|
75 |
+
st_profile_report(pr)
|
76 |
|
77 |
+
# Smart Cleaning Section
|
78 |
+
elif app_mode == "Smart Cleaning":
|
79 |
+
st.title("๐งผ Intelligent Data Cleaning")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
if st.session_state.raw_data is not None:
|
82 |
+
df = st.session_state.cleaned_data
|
|
|
83 |
|
84 |
+
# Cleaning Toolkit
|
85 |
+
col1, col2 = st.columns([1, 3])
|
86 |
+
with col1:
|
87 |
+
st.subheader("Cleaning Actions")
|
88 |
+
clean_action = st.selectbox("Choose Operation", [
|
89 |
+
"Handle Missing Values",
|
90 |
+
"Remove Duplicates",
|
91 |
+
"Normalize Data",
|
92 |
+
"Encode Categories"
|
93 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
if clean_action == "Handle Missing Values":
|
96 |
+
method = st.selectbox("Imputation Method", [
|
97 |
+
"KNN Imputation",
|
98 |
+
"Median Fill",
|
99 |
+
"Mean Fill",
|
100 |
+
"Drop Missing"
|
101 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
with col2:
|
104 |
+
if st.button("Apply Transformation"):
|
105 |
+
with st.spinner("Applying changes..."):
|
106 |
+
if clean_action == "Handle Missing Values":
|
107 |
+
if method == "KNN Imputation":
|
108 |
+
imputer = KNNImputer()
|
109 |
+
df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
|
110 |
+
elif method == "Median Fill":
|
111 |
+
df = df.fillna(df.median())
|
112 |
+
elif method == "Mean Fill":
|
113 |
+
df = df.fillna(df.mean())
|
114 |
+
else:
|
115 |
+
df = df.dropna()
|
116 |
|
117 |
+
st.session_state.cleaned_data = df
|
118 |
+
st.success("Transformation applied!")
|
119 |
+
|
120 |
+
# Data Comparison
|
121 |
+
st.subheader("Data Version Comparison")
|
122 |
+
col1, col2 = st.columns(2)
|
123 |
+
with col1:
|
124 |
+
st.write("Original Data", st.session_state.raw_data.head(3))
|
125 |
+
with col2:
|
126 |
+
st.write("Cleaned Data", df.head(3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
# Advanced EDA Section
|
129 |
+
elif app_mode == "Advanced EDA":
|
130 |
+
st.title("๐ Advanced Exploratory Analysis")
|
131 |
|
132 |
+
if st.session_state.cleaned_data is not None:
|
133 |
+
df = st.session_state.cleaned_data
|
134 |
|
135 |
+
# Visualization Selector
|
136 |
+
plot_type = st.selectbox("Choose Visualization", [
|
137 |
+
"Histogram",
|
138 |
+
"Scatter Plot",
|
139 |
+
"Box Plot",
|
140 |
+
"Correlation Heatmap",
|
141 |
+
"3D Scatter"
|
142 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
# Dynamic Axis Selection
|
145 |
+
cols = st.columns(3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
with cols[0]:
|
147 |
+
x_col = st.selectbox("X Axis", df.columns)
|
|
|
148 |
with cols[1]:
|
149 |
+
y_col = st.selectbox("Y Axis", df.columns) if plot_type in ["Scatter", "Box"] else None
|
150 |
+
with cols[2]:
|
151 |
+
z_col = st.selectbox("Z Axis", df.columns) if plot_type == "3D Scatter" else None
|
152 |
+
|
153 |
+
# Generate Plot
|
154 |
+
if st.button("Generate Visualization"):
|
155 |
+
if plot_type == "Histogram":
|
156 |
+
fig = px.histogram(df, x=x_col, nbins=30, template="plotly_dark")
|
157 |
+
elif plot_type == "Scatter Plot":
|
158 |
+
fig = px.scatter(df, x=x_col, y=y_col, color_discrete_sequence=['#00f7ff'])
|
159 |
+
elif plot_type == "3D Scatter":
|
160 |
+
fig = px.scatter_3d(df, x=x_col, y=y_col, z=z_col)
|
161 |
+
elif plot_type == "Correlation Heatmap":
|
162 |
+
corr = df.corr()
|
163 |
+
fig = px.imshow(corr, text_auto=True, color_continuous_scale='Viridis')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
# Model Training Section
|
168 |
+
elif app_mode == "Model Training":
|
169 |
+
st.title("๐ค Model Training Studio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
if st.session_state.cleaned_data is not None:
|
172 |
+
df = st.session_state.cleaned_data
|
173 |
|
174 |
+
# Model Setup
|
175 |
+
col1, col2 = st.columns([1, 3])
|
176 |
+
with col1:
|
177 |
+
model_type = st.selectbox("Choose Model", [
|
178 |
+
"Linear Regression",
|
179 |
+
"Decision Tree",
|
180 |
+
"Random Forest",
|
181 |
+
"XGBoost"
|
182 |
+
])
|
183 |
+
|
184 |
+
test_size = st.slider("Test Size", 0.1, 0.5, 0.2)
|
185 |
+
target = st.selectbox("Target Variable", df.columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
with col2:
|
188 |
+
if st.button("Train Model"):
|
189 |
+
X = df.drop(columns=[target])
|
190 |
+
y = df[target]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
193 |
+
X, y, test_size=test_size, random_state=42
|
|
|
|
|
|
|
|
|
|
|
194 |
)
|
195 |
|
196 |
+
if model_type == "Linear Regression":
|
197 |
+
model = LinearRegression()
|
198 |
+
elif model_type == "Decision Tree":
|
199 |
+
model = DecisionTreeRegressor()
|
200 |
+
|
201 |
+
model.fit(X_train, y_train)
|
202 |
+
st.session_state.model = model
|
203 |
+
st.session_state.train_test = {
|
204 |
+
'X_test': X_test,
|
205 |
+
'y_test': y_test
|
206 |
+
}
|
207 |
+
|
208 |
+
# Evaluation Metrics
|
209 |
+
y_pred = model.predict(X_test)
|
210 |
+
st.metric("Rยฒ Score", round(r2_score(y_test, y_pred), 2))
|
211 |
+
st.metric("MSE", round(mean_squared_error(y_test, y_pred), 2))
|
212 |
|
213 |
+
# Predictions Section
|
214 |
+
elif app_mode == "Predictions":
|
215 |
+
st.title("๐ฎ Make Predictions")
|
|
|
216 |
|
217 |
+
if st.session_state.model is not None:
|
218 |
+
model = st.session_state.model
|
219 |
|
220 |
+
# Prediction Interface
|
221 |
+
input_data = {}
|
222 |
+
for col in st.session_state.train_test['X_test'].columns:
|
223 |
+
input_data[col] = st.number_input(col, value=0.0)
|
224 |
+
|
225 |
+
if st.button("Predict"):
|
226 |
+
input_df = pd.DataFrame([input_data])
|
227 |
+
prediction = model.predict(input_df)
|
228 |
+
st.success(f"Predicted Value: {prediction[0]:.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
# Visualization Lab
|
231 |
+
elif app_mode == "Visualization Lab":
|
232 |
+
st.title("๐ Advanced Visualization Lab")
|
233 |
+
|
234 |
+
if st.session_state.cleaned_data is not None:
|
235 |
+
df = st.session_state.cleaned_data
|
236 |
+
|
237 |
+
# Visualization Gallery
|
238 |
+
viz_type = st.selectbox("Choose Visualization Type", [
|
239 |
+
"3D Scatter Plot",
|
240 |
+
"Interactive Heatmap",
|
241 |
+
"Time Series Analysis",
|
242 |
+
"Cluster Analysis"
|
243 |
+
])
|
244 |
+
|
245 |
+
# Dynamic Controls
|
246 |
+
cols = st.columns(3)
|
247 |
+
with cols[0]:
|
248 |
+
x_axis = st.selectbox("X Axis", df.columns)
|
249 |
+
with cols[1]:
|
250 |
+
y_axis = st.selectbox("Y Axis", df.columns)
|
251 |
+
with cols[2]:
|
252 |
+
z_axis = st.selectbox("Z Axis", df.columns) if viz_type == "3D Scatter Plot" else None
|
253 |
+
|
254 |
+
# Generate Visualization
|
255 |
+
if viz_type == "3D Scatter Plot":
|
256 |
+
fig = px.scatter_3d(df, x=x_axis, y=y_axis, z=z_axis, color=x_axis)
|
257 |
+
st.plotly_chart(fig, use_container_width=True)
|
258 |
+
|
259 |
+
elif viz_type == "Interactive Heatmap":
|
260 |
+
corr = df.corr()
|
261 |
+
fig = px.imshow(corr, text_auto=True, color_continuous_scale='RdBu')
|
262 |
+
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|