Spaces:
Sleeping
Sleeping
File size: 10,561 Bytes
567d64c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import groq
import os
import tempfile
import uuid
from dotenv import load_dotenv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
import fitz # PyMuPDF
import base64
from PIL import Image
import io
# Load environment variables
load_dotenv()
client = groq.Client(api_key=os.getenv("GROQ_LEGAL_API_KEY"))
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Directory to store FAISS indexes
FAISS_INDEX_DIR = "faiss_indexes_tech"
if not os.path.exists(FAISS_INDEX_DIR):
os.makedirs(FAISS_INDEX_DIR)
# Dictionary to store user-specific vectorstores
user_vectorstores = {}
# Custom CSS for Tech theme
custom_css = """
:root {
--primary-color: #008080; /* Teal */
--secondary-color: #006666; /* Dark Teal */
--light-background: #E0FFFF; /* Light Cyan */
--dark-text: #333333;
--white: #FFFFFF;
--border-color: #E5E7EB;
}
body { background-color: var(--light-background); font-family: 'Inter', sans-serif; }
.container { max-width: 1200px !important; margin: 0 auto !important; padding: 10px; }
.header { background-color: var(--white); border-bottom: 2px solid var(--border-color); padding: 15px 0; margin-bottom: 20px; border-radius: 12px 12px 0 0; box-shadow: 0 2px 4px rgba(0,0,0,0.05); }
.header-title { color: var(--secondary-color); font-size: 1.8rem; font-weight: 700; text-align: center; }
.header-subtitle { color: var(--dark-text); font-size: 1rem; text-align: center; margin-top: 5px; }
.chat-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; min-height: 500px; }
.message-user { background-color: var(--primary-color) !important; color: var(--white) !important; border-radius: 18px 18px 4px 18px !important; padding: 12px 16px !important; margin-left: auto !important; max-width: 80% !important; }
.message-bot { background-color: #F0F0F0 !important; color: var(--dark-text) !important; border-radius: 18px 18px 18px 4px !important; padding: 12px 16px !important; margin-right: auto !important; max-width: 80% !important; }
.input-area { background-color: var(--white) !important; border-top: 1px solid var(--border-color) !important; padding: 12px !important; border-radius: 0 0 12px 12px !important; }
.input-box { border: 1px solid var(--border-color) !important; border-radius: 24px !important; padding: 12px 16px !important; box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; }
.send-btn { background-color: var(--secondary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 10px 20px !important; font-weight: 500 !important; }
.clear-btn { background-color: #F0F0F0 !important; border: 1px solid var(--border-color) !important; border-radius: 24px !important; color: var(--dark-text) !important; padding: 8px 16px !important; font-weight: 500 !important; }
.pdf-viewer-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; padding: 20px; }
.pdf-viewer-image { max-width: 100%; height: auto; border: 1px solid var(--border-color); border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.05); }
.stats-box { background-color: #E0F0F0; padding: 10px; border-radius: 8px; margin-top: 10px; }
"""
# Function to process PDF files (unchanged)
def process_pdf(pdf_file):
if pdf_file is None:
return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0}
try:
session_id = str(uuid.uuid4())
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
temp_file.write(pdf_file)
pdf_path = temp_file.name
doc = fitz.open(pdf_path)
texts = [page.get_text() for page in doc]
page_images = []
for page in doc:
pix = page.get_pixmap()
img_bytes = pix.tobytes("png")
img_base64 = base64.b64encode(img_bytes).decode("utf-8")
page_images.append(img_base64)
total_pages = len(doc)
total_words = sum(len(text.split()) for text in texts)
doc.close()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.create_documents(texts)
vectorstore = FAISS.from_documents(chunks, embeddings)
index_path = os.path.join(FAISS_INDEX_DIR, session_id)
vectorstore.save_local(index_path)
user_vectorstores[session_id] = vectorstore
os.unlink(pdf_path)
pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words}
return session_id, f"✅ Successfully processed {len(chunks)} text chunks from your PDF", pdf_state
except Exception as e:
if "pdf_path" in locals() and os.path.exists(pdf_path):
os.unlink(pdf_path)
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}
# Function to generate chatbot responses with Tech theme
def generate_response(message, session_id, model_name, history):
if not message:
return history
try:
context = ""
if session_id and session_id in user_vectorstores:
vectorstore = user_vectorstores[session_id]
docs = vectorstore.similarity_search(message, k=3)
if docs:
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
system_prompt = "You are a technical assistant specializing in analyzing tech manuals, whitepapers, and documentation."
if context:
system_prompt += " Use the following context to answer the question if relevant: " + context
completion = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
],
temperature=0.7,
max_tokens=1024
)
response = completion.choices[0].message.content
history.append((message, response))
return history
except Exception as e:
history.append((message, f"Error generating response: {str(e)}"))
return history
# Functions to update PDF viewer (unchanged)
def update_pdf_viewer(pdf_state):
if not pdf_state["total_pages"]:
return 0, None, "No PDF uploaded yet"
try:
img_data = base64.b64decode(pdf_state["page_images"][0])
img = Image.open(io.BytesIO(img_data))
return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}"
except Exception as e:
print(f"Error decoding image: {e}")
return 0, None, "Error displaying PDF"
def update_image(page_num, pdf_state):
if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]:
return None
try:
img_data = base64.b64decode(pdf_state["page_images"][page_num - 1])
img = Image.open(io.BytesIO(img_data))
return img
except Exception as e:
print(f"Error decoding image: {e}")
return None
# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
current_session_id = gr.State(None)
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
gr.HTML("""
<div class="header">
<div class="header-title">Tech-Vision</div>
<div class="header-subtitle">Analyze technical documents with Groq's LLM API.</div>
</div>
""")
with gr.Row(elem_classes="container"):
with gr.Column(scale=1, min_width=300):
pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary")
upload_button = gr.Button("Process PDF", variant="primary")
pdf_status = gr.Markdown("No PDF uploaded yet")
model_dropdown = gr.Dropdown(
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
value="llama3-70b-8192",
label="Select Groq Model"
)
with gr.Column(scale=2, min_width=600):
with gr.Tabs():
with gr.TabItem("PDF Viewer"):
with gr.Column(elem_classes="pdf-viewer-container"):
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
stats_display = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box")
with gr.Row(elem_classes="container"):
with gr.Column(scale=2, min_width=600):
chatbot = gr.Chatbot(height=500, bubble_full_width=False, show_copy_button=True, elem_classes="chat-container")
with gr.Row():
msg = gr.Textbox(show_label=False, placeholder="Ask about your technical document...", scale=5)
send_btn = gr.Button("Send", scale=1)
clear_btn = gr.Button("Clear Conversation")
# Event Handlers (unchanged)
upload_button.click(
process_pdf,
inputs=[pdf_file],
outputs=[current_session_id, pdf_status, pdf_state]
).then(
update_pdf_viewer,
inputs=[pdf_state],
outputs=[page_slider, pdf_image, stats_display]
)
msg.submit(
generate_response,
inputs=[msg, current_session_id, model_dropdown, chatbot],
outputs=[chatbot]
).then(lambda: "", None, [msg])
send_btn.click(
generate_response,
inputs=[msg, current_session_id, model_dropdown, chatbot],
outputs=[chatbot]
).then(lambda: "", None, [msg])
clear_btn.click(
lambda: ([], None, "No PDF uploaded yet", {"page_images": [], "total_pages": 0, "total_words": 0}, 0, None, "No PDF uploaded yet"),
None,
[chatbot, current_session_id, pdf_status, pdf_state, page_slider, pdf_image, stats_display]
)
page_slider.change(
update_image,
inputs=[page_slider, pdf_state],
outputs=[pdf_image]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |