File size: 10,561 Bytes
567d64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import groq
import os
import tempfile
import uuid
from dotenv import load_dotenv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
import fitz  # PyMuPDF
import base64
from PIL import Image
import io

# Load environment variables
load_dotenv()
client = groq.Client(api_key=os.getenv("GROQ_LEGAL_API_KEY"))
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# Directory to store FAISS indexes
FAISS_INDEX_DIR = "faiss_indexes_tech"
if not os.path.exists(FAISS_INDEX_DIR):
    os.makedirs(FAISS_INDEX_DIR)

# Dictionary to store user-specific vectorstores
user_vectorstores = {}

# Custom CSS for Tech theme
custom_css = """
:root {
    --primary-color: #008080;  /* Teal */
    --secondary-color: #006666;  /* Dark Teal */
    --light-background: #E0FFFF;  /* Light Cyan */
    --dark-text: #333333;
    --white: #FFFFFF;
    --border-color: #E5E7EB;
}
body { background-color: var(--light-background); font-family: 'Inter', sans-serif; }
.container { max-width: 1200px !important; margin: 0 auto !important; padding: 10px; }
.header { background-color: var(--white); border-bottom: 2px solid var(--border-color); padding: 15px 0; margin-bottom: 20px; border-radius: 12px 12px 0 0; box-shadow: 0 2px 4px rgba(0,0,0,0.05); }
.header-title { color: var(--secondary-color); font-size: 1.8rem; font-weight: 700; text-align: center; }
.header-subtitle { color: var(--dark-text); font-size: 1rem; text-align: center; margin-top: 5px; }
.chat-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; min-height: 500px; }
.message-user { background-color: var(--primary-color) !important; color: var(--white) !important; border-radius: 18px 18px 4px 18px !important; padding: 12px 16px !important; margin-left: auto !important; max-width: 80% !important; }
.message-bot { background-color: #F0F0F0 !important; color: var(--dark-text) !important; border-radius: 18px 18px 18px 4px !important; padding: 12px 16px !important; margin-right: auto !important; max-width: 80% !important; }
.input-area { background-color: var(--white) !important; border-top: 1px solid var(--border-color) !important; padding: 12px !important; border-radius: 0 0 12px 12px !important; }
.input-box { border: 1px solid var(--border-color) !important; border-radius: 24px !important; padding: 12px 16px !important; box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; }
.send-btn { background-color: var(--secondary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 10px 20px !important; font-weight: 500 !important; }
.clear-btn { background-color: #F0F0F0 !important; border: 1px solid var(--border-color) !important; border-radius: 24px !important; color: var(--dark-text) !important; padding: 8px 16px !important; font-weight: 500 !important; }
.pdf-viewer-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; padding: 20px; }
.pdf-viewer-image { max-width: 100%; height: auto; border: 1px solid var(--border-color); border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.05); }
.stats-box { background-color: #E0F0F0; padding: 10px; border-radius: 8px; margin-top: 10px; }
"""

# Function to process PDF files (unchanged)
def process_pdf(pdf_file):
    if pdf_file is None:
        return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0}
    try:
        session_id = str(uuid.uuid4())
        with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
            temp_file.write(pdf_file)
            pdf_path = temp_file.name
        
        doc = fitz.open(pdf_path)
        texts = [page.get_text() for page in doc]
        page_images = []
        for page in doc:
            pix = page.get_pixmap()
            img_bytes = pix.tobytes("png")
            img_base64 = base64.b64encode(img_bytes).decode("utf-8")
            page_images.append(img_base64)
        total_pages = len(doc)
        total_words = sum(len(text.split()) for text in texts)
        doc.close()

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        chunks = text_splitter.create_documents(texts)
        vectorstore = FAISS.from_documents(chunks, embeddings)
        index_path = os.path.join(FAISS_INDEX_DIR, session_id)
        vectorstore.save_local(index_path)
        user_vectorstores[session_id] = vectorstore

        os.unlink(pdf_path)
        pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words}
        return session_id, f"✅ Successfully processed {len(chunks)} text chunks from your PDF", pdf_state
    except Exception as e:
        if "pdf_path" in locals() and os.path.exists(pdf_path):
            os.unlink(pdf_path)
        return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}

# Function to generate chatbot responses with Tech theme
def generate_response(message, session_id, model_name, history):
    if not message:
        return history
    try:
        context = ""
        if session_id and session_id in user_vectorstores:
            vectorstore = user_vectorstores[session_id]
            docs = vectorstore.similarity_search(message, k=3)
            if docs:
                context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
        system_prompt = "You are a technical assistant specializing in analyzing tech manuals, whitepapers, and documentation."
        if context:
            system_prompt += " Use the following context to answer the question if relevant: " + context
        completion = client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": message}
            ],
            temperature=0.7,
            max_tokens=1024
        )
        response = completion.choices[0].message.content
        history.append((message, response))
        return history
    except Exception as e:
        history.append((message, f"Error generating response: {str(e)}"))
        return history

# Functions to update PDF viewer (unchanged)
def update_pdf_viewer(pdf_state):
    if not pdf_state["total_pages"]:
        return 0, None, "No PDF uploaded yet"
    try:
        img_data = base64.b64decode(pdf_state["page_images"][0])
        img = Image.open(io.BytesIO(img_data))
        return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}"
    except Exception as e:
        print(f"Error decoding image: {e}")
        return 0, None, "Error displaying PDF"

def update_image(page_num, pdf_state):
    if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]:
        return None
    try:
        img_data = base64.b64decode(pdf_state["page_images"][page_num - 1])
        img = Image.open(io.BytesIO(img_data))
        return img
    except Exception as e:
        print(f"Error decoding image: {e}")
        return None

# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    current_session_id = gr.State(None)
    pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
    gr.HTML("""
    <div class="header">
        <div class="header-title">Tech-Vision</div>
        <div class="header-subtitle">Analyze technical documents with Groq's LLM API.</div>
    </div>
    """)
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=1, min_width=300):
            pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary")
            upload_button = gr.Button("Process PDF", variant="primary")
            pdf_status = gr.Markdown("No PDF uploaded yet")
            model_dropdown = gr.Dropdown(
                choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
                value="llama3-70b-8192",
                label="Select Groq Model"
            )
        with gr.Column(scale=2, min_width=600):
            with gr.Tabs():
                with gr.TabItem("PDF Viewer"):
                    with gr.Column(elem_classes="pdf-viewer-container"):
                        page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
                        pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
                        stats_display = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box")
    
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=2, min_width=600):
            chatbot = gr.Chatbot(height=500, bubble_full_width=False, show_copy_button=True, elem_classes="chat-container")
            with gr.Row():
                msg = gr.Textbox(show_label=False, placeholder="Ask about your technical document...", scale=5)
                send_btn = gr.Button("Send", scale=1)
            clear_btn = gr.Button("Clear Conversation")
    
    # Event Handlers (unchanged)
    upload_button.click(
        process_pdf,
        inputs=[pdf_file],
        outputs=[current_session_id, pdf_status, pdf_state]
    ).then(
        update_pdf_viewer,
        inputs=[pdf_state],
        outputs=[page_slider, pdf_image, stats_display]
    )
    
    msg.submit(
        generate_response,
        inputs=[msg, current_session_id, model_dropdown, chatbot],
        outputs=[chatbot]
    ).then(lambda: "", None, [msg])
    
    send_btn.click(
        generate_response,
        inputs=[msg, current_session_id, model_dropdown, chatbot],
        outputs=[chatbot]
    ).then(lambda: "", None, [msg])
    
    clear_btn.click(
        lambda: ([], None, "No PDF uploaded yet", {"page_images": [], "total_pages": 0, "total_words": 0}, 0, None, "No PDF uploaded yet"),
        None,
        [chatbot, current_session_id, pdf_status, pdf_state, page_slider, pdf_image, stats_display]
    )
    
    page_slider.change(
        update_image,
        inputs=[page_slider, pdf_state],
        outputs=[pdf_image]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()