File size: 29,501 Bytes
4f36b34
 
567d64c
 
 
4f36b34
8b2cff8
d04b52f
4f36b34
 
567d64c
4f36b34
567d64c
4f36b34
095ee1e
 
 
40da265
645418b
4c3afa8
9611f6e
567d64c
 
095ee1e
645418b
4c3afa8
645418b
d04b52f
 
 
 
645418b
 
d04b52f
 
 
 
 
 
 
 
 
567d64c
4c6c992
 
567d64c
 
 
 
 
 
d04b52f
da951f5
d04b52f
 
 
 
 
 
 
 
 
da951f5
d04b52f
 
 
da951f5
d04b52f
 
 
 
 
 
 
 
 
7e70b0d
d04b52f
 
da951f5
d04b52f
 
 
7e70b0d
d04b52f
84384fc
d04b52f
 
 
 
 
dbabe5b
d04b52f
 
 
 
 
 
84384fc
d04b52f
 
7e70b0d
d04b52f
 
 
84384fc
d04b52f
 
 
 
 
 
 
 
a490b01
567d64c
 
84a6029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095ee1e
567d64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f36b34
4c6c992
567d64c
 
4c3afa8
567d64c
 
4c3afa8
645418b
4c6c992
645418b
4c6c992
 
 
 
645418b
4c6c992
 
 
 
 
 
 
 
 
645418b
 
095ee1e
4c3afa8
 
 
095ee1e
567d64c
4c6c992
 
 
 
4c3afa8
567d64c
 
 
 
 
 
 
 
 
4c3afa8
567d64c
4c6c992
 
 
 
 
 
 
 
 
 
 
567d64c
4c3afa8
567d64c
4c3afa8
4c6c992
 
 
 
 
 
 
 
 
 
567d64c
 
095ee1e
567d64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095ee1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c6c992
40da265
4c6c992
40da265
 
4c3afa8
40da265
a95694e
 
4c6c992
a95694e
 
 
4c6c992
a95694e
 
 
40da265
 
 
9b02f6a
40da265
4c3afa8
 
645418b
 
4c6c992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645418b
 
 
 
 
4c6c992
 
 
 
645418b
 
 
4c6c992
40da265
 
 
d04b52f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da951f5
d04b52f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e70b0d
d04b52f
 
 
 
7e70b0d
d04b52f
7e70b0d
d04b52f
 
 
da951f5
d04b52f
 
7e70b0d
d04b52f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e70b0d
d04b52f
7e70b0d
d04b52f
 
7e70b0d
 
d04b52f
7e70b0d
d04b52f
 
7e70b0d
 
d04b52f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da951f5
d04b52f
567d64c
ec162f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
import gradio as gr
import groq
import os
import tempfile
import uuid
from dotenv import load_dotenv
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
import fitz  # PyMuPDF
import base64
from PIL import Image
import io
import requests
import json
import re
from datetime import datetime, timedelta
from pathlib import Path
import torch
import numpy as np

# Load environment variables
load_dotenv()
client = groq.Client(api_key=os.getenv("GROQ_TECH_API_KEY"))

# Initialize embeddings with error handling
try:
    # Force CPU usage for embeddings
    embeddings = HuggingFaceInstructEmbeddings(
        model_name="hkunlp/instructor-base",
        model_kwargs={"device": "cpu"}  # Force CPU usage
    )
except Exception as e:
    print(f"Warning: Failed to load primary embeddings model: {e}")
    try:
        embeddings = HuggingFaceInstructEmbeddings(
            model_name="all-MiniLM-L6-v2",
            model_kwargs={"device": "cpu"}  # Force CPU usage
        )
    except Exception as e:
        print(f"Warning: Failed to load fallback embeddings model: {e}")
        embeddings = None

# Directory to store FAISS indexes with better naming
FAISS_INDEX_DIR = "faiss_indexes_tech_cpu"
if not os.path.exists(FAISS_INDEX_DIR):
    os.makedirs(FAISS_INDEX_DIR)

# Dictionary to store user-specific vectorstores
user_vectorstores = {}

# Custom CSS for Tech theme
custom_css = """
:root {
    --primary-color: #4285F4;
    --secondary-color: #34A853;
    --accent-color: #EA4335;
    --light-background: #F8F9FA;
    --dark-text: #202124;
    --white: #FFFFFF;
    --border-color: #DADCE0;
    --code-bg: #F1F3F4;
}
body { 
    background-color: var(--light-background); 
    font-family: 'Google Sans', 'Roboto', sans-serif; 
}
.container { 
    max-width: 1200px !important; 
    margin: 0 auto !important; 
    padding: 10px; 
}
.header { 
    background-color: var(--white);
    border-bottom: 1px solid var(--border-color);
    padding: 15px 0;
    margin-bottom: 20px;
    border-radius: 12px 12px 0 0;
    box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.header-title { 
    color: var(--primary-color);
    font-size: 1.8rem;
    font-weight: 700;
    text-align: center;
}
.header-subtitle { 
    color: var(--dark-text);
    font-size: 1rem;
    text-align: center;
    margin-top: 5px;
}
.chat-container { 
    border-radius: 12px !important;
    box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important;
    background-color: var(--white) !important;
    border: 1px solid var(--border-color) !important;
    min-height: 500px;
}
.tool-container { 
    background-color: var(--white);
    border-radius: 12px;
    box-shadow: 0 4px 6px rgba(0,0,0,0.1);
    padding: 15px;
    margin-bottom: 20px;
}
.code-block { 
    background-color: var(--code-bg);
    padding: 12px;
    border-radius: 8px;
    font-family: 'Roboto Mono', monospace;
    overflow-x: auto;
    margin: 10px 0;
    border-left: 3px solid var(--primary-color);
}
"""

# Helper functions for code analysis
def detect_language(extension):
    """Detect programming language from file extension"""
    extension_map = {
        ".py": "Python",
        ".js": "JavaScript",
        ".java": "Java",
        ".cpp": "C++",
        ".c": "C",
        ".cs": "C#",
        ".php": "PHP",
        ".rb": "Ruby",
        ".go": "Go",
        ".ts": "TypeScript"
    }
    return extension_map.get(extension.lower(), "Unknown")

def calculate_complexity_metrics(content, language):
    """Calculate code complexity metrics"""
    lines = content.split('\n')
    total_lines = len(lines)
    blank_lines = len([line for line in lines if not line.strip()])
    code_lines = total_lines - blank_lines
    
    metrics = {
        "language": language,
        "total_lines": total_lines,
        "code_lines": code_lines,
        "blank_lines": blank_lines
    }
    
    return metrics

def generate_recommendations(metrics):
    """Generate code quality recommendations based on metrics"""
    recommendations = []
    
    if metrics.get("cyclomatic_complexity", 0) > 10:
        recommendations.append("πŸ”„ High cyclomatic complexity detected. Consider breaking down complex functions.")
    
    if metrics.get("code_lines", 0) > 300:
        recommendations.append("πŸ“ File is quite large. Consider splitting it into multiple modules.")
    
    if metrics.get("functions", 0) > 10:
        recommendations.append("πŸ”§ Large number of functions. Consider grouping related functions into classes.")
    
    if metrics.get("comments", 0) / max(metrics.get("code_lines", 1), 1) < 0.1:
        recommendations.append("πŸ“ Low comment ratio. Consider adding more documentation.")
    
    return "### Recommendations\n\n" + "\n\n".join(recommendations) if recommendations else ""

# Function to process PDF files
def process_pdf(pdf_file):
    if pdf_file is None:
        return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0}
    try:
        session_id = str(uuid.uuid4())
        with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
            temp_file.write(pdf_file)
            pdf_path = temp_file.name
        
        doc = fitz.open(pdf_path)
        texts = [page.get_text() for page in doc]
        page_images = []
        for page in doc:
            pix = page.get_pixmap()
            img_bytes = pix.tobytes("png")
            img_base64 = base64.b64encode(img_bytes).decode("utf-8")
            page_images.append(img_base64)
        total_pages = len(doc)
        total_words = sum(len(text.split()) for text in texts)
        doc.close()

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        chunks = text_splitter.create_documents(texts)
        vectorstore = FAISS.from_documents(chunks, embeddings)
        index_path = os.path.join(FAISS_INDEX_DIR, session_id)
        vectorstore.save_local(index_path)
        user_vectorstores[session_id] = vectorstore

        os.unlink(pdf_path)
        pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words}
        return session_id, f"βœ… Successfully processed {len(chunks)} text chunks from your PDF", pdf_state
    except Exception as e:
        if "pdf_path" in locals() and os.path.exists(pdf_path):
            os.unlink(pdf_path)
        return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}

# Function to generate chatbot responses with Tech theme
def generate_response(message, session_id, model_name, history):
    """Generate chatbot responses with FAISS context enhancement"""
    if not message:
        return history
    
    try:
        context = ""
        if embeddings and session_id and session_id in user_vectorstores:
            try:
                print(f"Performing similarity search with session: {session_id}")
                vectorstore = user_vectorstores[session_id]
                
                # Use a higher k value to get more relevant context
                docs = vectorstore.similarity_search(message, k=5)
                
                if docs:
                    # Format the context more clearly with source information
                    context = "\n\nRelevant code context from your files:\n\n"
                    for i, doc in enumerate(docs, 1):
                        source = doc.metadata.get("source", "Unknown")
                        language = doc.metadata.get("language", "Unknown")
                        context += f"--- Segment {i} from {source} ({language}) ---\n"
                        context += f"```\n{doc.page_content}\n```\n\n"
                    
                    print(f"Found {len(docs)} relevant code segments for context.")
            except Exception as e:
                print(f"Warning: Failed to perform similarity search: {e}")
        
        system_prompt = """You are a technical assistant specializing in software development and programming.
        Provide clear, accurate responses with code examples when relevant.
        Format code snippets with proper markdown code blocks and specify the language."""
        
        if context:
            system_prompt += f"\n\nUse this context from the uploaded code files to inform your answers:{context}"
        
        # Add instruction to reference specific file parts
        system_prompt += "\nWhen discussing code from the uploaded files, specifically reference the file name and segment number."
        
        completion = client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": message}
            ],
            temperature=0.7,
            max_tokens=1024
        )
        
        response = completion.choices[0].message.content
        
        # For proper chat history handling
        if isinstance(history, list) and history and isinstance(history[0], dict):
            # History is in message format
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": response})
        else:
            # Fallback for other formats
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": response})
        
        return history
        
    except Exception as e:
        error_msg = f"Error generating response: {str(e)}"
        
        # Handle different history formats
        if isinstance(history, list):
            if history and isinstance(history[0], dict):
                history.append({"role": "user", "content": message})
                history.append({"role": "assistant", "content": error_msg})
            else:
                history.append({"role": "user", "content": message})
                history.append({"role": "assistant", "content": error_msg})
        
        return history

# Functions to update PDF viewer
def update_pdf_viewer(pdf_state):
    if not pdf_state["total_pages"]:
        return 0, None, "No PDF uploaded yet"
    try:
        img_data = base64.b64decode(pdf_state["page_images"][0])
        img = Image.open(io.BytesIO(img_data))
        return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}"
    except Exception as e:
        print(f"Error decoding image: {e}")
        return 0, None, "Error displaying PDF"

def update_image(page_num, pdf_state):
    if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]:
        return None
    try:
        img_data = base64.b64decode(pdf_state["page_images"][page_num - 1])
        img = Image.open(io.BytesIO(img_data))
        return img
    except Exception as e:
        print(f"Error decoding image: {e}")
        return None

# GitHub API integration
def search_github_repos(query, sort="stars", order="desc", per_page=10):
    """Search for GitHub repositories"""
    try:
        github_token = os.getenv("GITHUB_TOKEN", "")
        headers = {}
        if github_token:
            headers["Authorization"] = f"token {github_token}"
            
        params = {
            "q": query,
            "sort": sort,
            "order": order,
            "per_page": per_page
        }
        
        response = requests.get(
            "https://api.github.com/search/repositories",
            headers=headers,
            params=params
        )
        
        if response.status_code != 200:
            print(f"GitHub API Error: {response.status_code} - {response.text}")
            return []
            
        data = response.json()
        return data.get("items", [])
    except Exception as e:
        print(f"Error in GitHub search: {e}")
        return []

# Stack Overflow API integration
def search_stackoverflow(query, sort="votes", site="stackoverflow", pagesize=10):
    """Search for questions on Stack Overflow"""
    try:
        params = {
            "order": "desc",
            "sort": sort,
            "site": site,
            "pagesize": pagesize,
            "intitle": query
        }
        
        response = requests.get(
            "https://api.stackexchange.com/2.3/search/advanced",
            params=params
        )
        
        if response.status_code != 200:
            print(f"Stack Exchange API Error: {response.status_code} - {response.text}")
            return []
            
        data = response.json()
        
        # Process results to convert Unix timestamps to readable dates
        for item in data.get("items", []):
            if "creation_date" in item:
                item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d")
                
        return data.get("items", [])
    except Exception as e:
        print(f"Error in Stack Overflow search: {e}")
        return []

def get_stackoverflow_answers(question_id, site="stackoverflow"):
    """Get answers for a specific question on Stack Overflow"""
    try:
        params = {
            "order": "desc",
            "sort": "votes",
            "site": site,
            "filter": "withbody"  # Include the answer body in the response
        }
        
        response = requests.get(
            f"https://api.stackexchange.com/2.3/questions/{question_id}/answers",
            params=params
        )
        
        if response.status_code != 200:
            print(f"Stack Exchange API Error: {response.status_code} - {response.text}")
            return []
            
        data = response.json()
        
        # Process results
        for item in data.get("items", []):
            if "creation_date" in item:
                item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d")
                
        return data.get("items", [])
    except Exception as e:
        print(f"Error getting Stack Overflow answers: {e}")
        return []

def explain_code(code):
    """Explain code using LLM"""
    try:
        system_prompt = "You are an expert programmer and code reviewer. Your task is to explain the provided code in a clear, concise manner. Include:"
        system_prompt += "\n1. What the code does (high-level overview)"
        system_prompt += "\n2. Key functions/components and their purposes"
        system_prompt += "\n3. Potential issues or optimization opportunities"
        system_prompt += "\n4. Any best practices that are followed or violated"
        
        completion = client.chat.completions.create(
            model="llama3-70b-8192",  # Using more capable model for code explanation
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": f"Explain this code:\n```\n{code}\n```"}
            ],
            temperature=0.3,
            max_tokens=1024
        )
        
        explanation = completion.choices[0].message.content
        return f"**Code Explanation:**\n\n{explanation}"
    except Exception as e:
        return f"Error explaining code: {str(e)}"

def perform_repo_search(query, language, sort_by, min_stars):
    """Perform GitHub repository search with UI parameters"""
    try:
        if not query:
            return "Please enter a search query"
            
        # Build the search query with filters
        search_query = query
        if language and language != "any":
            search_query += f" language:{language}"
        if min_stars and min_stars != "0":
            search_query += f" stars:>={min_stars}"
            
        # Map sort_by to GitHub API parameters
        sort_param = "stars"
        if sort_by == "updated":
            sort_param = "updated"
        elif sort_by == "forks":
            sort_param = "forks"
            
        results = search_github_repos(search_query, sort=sort_param)
        
        if not results:
            return "No repositories found. Try different search terms."
            
        # Format results as markdown
        markdown = "## GitHub Repository Search Results\n\n"
        
        for i, repo in enumerate(results, 1):
            markdown += f"### {i}. [{repo['full_name']}]({repo['html_url']})\n\n"
            
            if repo['description']:
                markdown += f"{repo['description']}\n\n"
                
            markdown += f"**Language:** {repo['language'] or 'Not specified'}\n"
            markdown += f"**Stars:** {repo['stargazers_count']} | **Forks:** {repo['forks_count']} | **Watchers:** {repo['watchers_count']}\n"
            markdown += f"**Created:** {repo['created_at'][:10]} | **Updated:** {repo['updated_at'][:10]}\n\n"
            
            if repo.get('topics'):
                markdown += f"**Topics:** {', '.join(repo['topics'])}\n\n"
                
            if repo.get('license') and repo['license'].get('name'):
                markdown += f"**License:** {repo['license']['name']}\n\n"
                
            markdown += f"[View Repository]({repo['html_url']}) | [Clone URL]({repo['clone_url']})\n\n"
            markdown += "---\n\n"
            
        return markdown
    except Exception as e:
        return f"Error searching for repositories: {str(e)}"

def perform_stack_search(query, tag, sort_by):
    """Perform Stack Overflow search with UI parameters"""
    try:
        if not query:
            return "Please enter a search query"
            
        # Add tag to query if specified
        if tag and tag != "any":
            query_with_tag = f"{query} [tag:{tag}]"
        else:
            query_with_tag = query
            
        # Map sort_by to Stack Exchange API parameters
        sort_param = "votes"
        if sort_by == "newest":
            sort_param = "creation"
        elif sort_by == "activity":
            sort_param = "activity"
            
        results = search_stackoverflow(query_with_tag, sort=sort_param)
        
        if not results:
            return "No questions found. Try different search terms."
            
        # Format results as markdown
        markdown = "## Stack Overflow Search Results\n\n"
        
        for i, question in enumerate(results, 1):
            markdown += f"### {i}. [{question['title']}]({question['link']})\n\n"
            
            # Score and answer stats
            markdown += f"**Score:** {question['score']} | **Answers:** {question['answer_count']}"
            if question.get('is_answered'):
                markdown += " βœ“ (Accepted answer available)"
            markdown += "\n\n"
            
            # Tags
            if question.get('tags'):
                markdown += "**Tags:** "
                for tag in question['tags']:
                    markdown += f"`{tag}` "
                markdown += "\n\n"
                
            # Asked info
            markdown += f"**Asked:** {question['creation_date']} | **Views:** {question.get('view_count', 'N/A')}\n\n"
            
            markdown += f"[View Question]({question['link']})\n\n"
            markdown += "---\n\n"
            
        return markdown
    except Exception as e:
        return f"Error searching Stack Overflow: {str(e)}"

# Modify the process_code_file function
def process_code_file(file_obj):
    """Process uploaded code files and store in FAISS index"""
    if file_obj is None:
        return None, "No file uploaded", {}
    
    try:
        # Handle both file objects and bytes objects
        if isinstance(file_obj, bytes):
            content = file_obj.decode('utf-8', errors='replace')  # Added error handling
            file_name = "uploaded_file"
            file_extension = ".txt"  # Default extension
        else:
            content = file_obj.read().decode('utf-8', errors='replace')  # Added error handling
            file_name = getattr(file_obj, 'name', 'uploaded_file')
            file_extension = Path(file_name).suffix.lower()
            
        language = detect_language(file_extension)
        
        # Calculate metrics
        metrics = calculate_complexity_metrics(content, language)
        
        # Create vectorstore if embeddings are available
        session_id = None
        if embeddings:
            try:
                print(f"Creating FAISS index for {file_name}...")
                # Improved chunking for code files
                text_splitter = RecursiveCharacterTextSplitter(
                    chunk_size=500,  # Smaller chunks for code
                    chunk_overlap=50,
                    separators=["\n\n", "\n", " ", ""]
                )
                chunks = text_splitter.create_documents([content], metadatas=[{"filename": file_name, "language": language}])
                
                # Add source metadata to help with retrieval
                for i, chunk in enumerate(chunks):
                    chunk.metadata["chunk_id"] = i
                    chunk.metadata["source"] = file_name
                
                # Create and store vectorstore
                vectorstore = FAISS.from_documents(chunks, embeddings)
                session_id = str(uuid.uuid4())
                index_path = os.path.join(FAISS_INDEX_DIR, session_id)
                vectorstore.save_local(index_path)
                user_vectorstores[session_id] = vectorstore
                
                # Add number of chunks to metrics for display
                metrics["chunks"] = len(chunks)
                print(f"Successfully created FAISS index with {len(chunks)} chunks.")
            except Exception as e:
                print(f"Warning: Failed to create vectorstore: {e}")
        
        return session_id, f"βœ… Successfully analyzed {file_name} and stored in FAISS index", metrics
    except Exception as e:
        return None, f"Error processing file: {str(e)}", {}

# Update the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    current_session_id = gr.State(None)
    code_state = gr.State({})
    
    gr.HTML("""
    <div class="header">
        <div class="header-title">Tech-Vision AI</div>
        <div class="header-subtitle">Advanced Code Analysis & Technical Assistant</div>
    </div>
    """)
    
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=1, min_width=300):
            file_input = gr.File(
                label="Upload Code File",
                file_types=[".py", ".js", ".java", ".cpp", ".c", ".cs", ".php", ".rb", ".go", ".ts"],
                type="binary"
            )
            upload_button = gr.Button("Analyze Code", variant="primary")
            file_status = gr.Markdown("No file uploaded yet")
            model_dropdown = gr.Dropdown(
                choices=["llama3-70b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
                value="llama3-70b-8192",
                label="Select Model"
            )
            
            # Developer Tools Section
            gr.Markdown("### Developer Tools", elem_classes="tool-title")
            with gr.Group(elem_classes="tool-container"):  # Replace Box with Group
                with gr.Tabs():
                    with gr.TabItem("GitHub Search"):
                        repo_query = gr.Textbox(label="Search Query", placeholder="Enter keywords to search for repositories")
                        with gr.Row():
                            language = gr.Dropdown(
                                choices=["any", "JavaScript", "Python", "Java", "C++", "TypeScript", "Go", "Rust", "PHP", "C#"],
                                value="any",
                                label="Language"
                            )
                            min_stars = gr.Dropdown(
                                choices=["0", "10", "50", "100", "1000", "10000"],
                                value="0",
                                label="Min Stars"
                            )
                        sort_by = gr.Dropdown(
                            choices=["stars", "forks", "updated"],
                            value="stars",
                            label="Sort By"
                        )
                        repo_search_btn = gr.Button("Search Repositories")
                    
                    with gr.TabItem("Stack Overflow"):
                        stack_query = gr.Textbox(label="Search Query", placeholder="Enter your technical question")
                        with gr.Row():
                            tag = gr.Dropdown(
                                choices=["any", "python", "javascript", "java", "c++", "react", "node.js", "android", "ios", "sql"],
                                value="any",
                                label="Tag"
                            )
                            so_sort_by = gr.Dropdown(
                                choices=["votes", "newest", "activity"],
                                value="votes",
                                label="Sort By"
                            )
                        so_search_btn = gr.Button("Search Stack Overflow")
                
                    with gr.TabItem("Code Explainer"):
                        code_input = gr.Textbox(
                            label="Code to Explain", 
                            placeholder="Paste your code here...",
                            lines=10
                        )
                        explain_btn = gr.Button("Explain Code")
                
        with gr.Column(scale=2, min_width=600):
            with gr.Tabs():
                with gr.TabItem("Code Analysis"):
                    with gr.Column(elem_classes="code-viewer-container"):
                        code_metrics = gr.Markdown("No code analyzed yet", elem_classes="stats-box")
                        code_recommendations = gr.Markdown("", elem_classes="recommendations-box")
                
                with gr.TabItem("GitHub Results"):
                    repo_results = gr.Markdown("Search for repositories to see results here")
                
                with gr.TabItem("Stack Overflow Results"):
                    stack_results = gr.Markdown("Search for questions to see results here")
                    
                with gr.TabItem("Code Explanation"):
                    code_explanation = gr.Markdown("Paste your code and click 'Explain Code' to see an explanation here")
    
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=2, min_width=600):
            chatbot = gr.Chatbot(
                height=500, 
                show_copy_button=True, 
                elem_classes="chat-container",
                type="messages"
            )
            with gr.Row():
                msg = gr.Textbox(
                    show_label=False, 
                    placeholder="Ask about your code, type /github to search repos, or /stack to search Stack Overflow...", 
                    scale=5
                )
                send_btn = gr.Button("Send", scale=1)
            clear_btn = gr.Button("Clear Conversation")
    
    # Update event handlers
    upload_button.click(
        lambda x: process_code_file(x),
        inputs=[file_input],
        outputs=[current_session_id, file_status, code_state]
    ).then(
        lambda state: (
            f"### Code Analysis Results\n\n"
            f"**Language:** {state.get('language', 'Unknown')}\n"
            f"**Total Lines:** {state.get('total_lines', 0)}\n"
            f"**Code Lines:** {state.get('code_lines', 0)}\n"
            f"**Comment Lines:** {state.get('comments', 0)}\n"
            f"**Functions:** {state.get('functions', 0)}\n"
            f"**Classes:** {state.get('classes', 0)}\n"
            f"**Complexity Score:** {state.get('cyclomatic_complexity', 0)}\n"
        ),
        inputs=[code_state],
        outputs=[code_metrics]
    ).then(
        lambda state: generate_recommendations(state),
        inputs=[code_state],
        outputs=[code_recommendations]
    )
    
    msg.submit(
        generate_response,
        inputs=[msg, current_session_id, model_dropdown, chatbot],
        outputs=[chatbot]
    ).then(lambda: "", None, [msg])
    
    send_btn.click(
        generate_response,
        inputs=[msg, current_session_id, model_dropdown, chatbot],
        outputs=[chatbot]
    ).then(lambda: "", None, [msg])
    
    clear_btn.click(
        lambda: ([], None, "No file uploaded", {}, None),
        None,
        [chatbot, current_session_id, file_status, code_state, code_metrics]
    )
    
    # Tech tool handlers
    repo_search_btn.click(
        perform_repo_search,
        inputs=[repo_query, language, sort_by, min_stars],
        outputs=[repo_results]
    )
    
    so_search_btn.click(
        perform_stack_search,
        inputs=[stack_query, tag, so_sort_by],
        outputs=[stack_results]
    )
    
    explain_btn.click(
        explain_code,
        inputs=[code_input],
        outputs=[code_explanation]
    )

# Add footer with attribution
gr.HTML("""
<div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;">
    Created by Calvin Allen Crawford
</div>
""")

# Launch the app
if __name__ == "__main__":
    demo.launch()