Tech-Vision / app.py
CosmickVisions's picture
Update app.py
2247005 verified
raw
history blame
47.9 kB
# Standard library imports
import os
import tempfile
import uuid
import base64
import io
import json
import re
from datetime import datetime, timedelta
# Third-party imports
import gradio as gr
import groq
import numpy as np
import pandas as pd
import openpyxl
import requests
import fitz # PyMuPDF
from PIL import Image
from dotenv import load_dotenv
from transformers import AutoProcessor, AutoModelForVision2Seq
import torch
import sass
from pathlib import Path
import pyttsx3
import speech_recognition as sr
# LangChain imports
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Load environment variables
load_dotenv()
client = groq.Client(api_key=os.getenv("GROQ_TECH_API_KEY"))
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Directory to store FAISS indexes
FAISS_INDEX_DIR = "faiss_indexes_tech"
if not os.path.exists(FAISS_INDEX_DIR):
os.makedirs(FAISS_INDEX_DIR)
# Dictionary to store user-specific vectorstores
user_vectorstores = {}
# Advanced SCSS with cyberpunk styling
CYBERPUNK_SCSS = """
// Advanced Cyberpunk Theme with Neural Network Aesthetics
@use "sass:math";
@use "sass:color";
// Neural Color System
$neural-colors: (
'synapse-blue': #00F3FF,
'neural-red': #FF0033,
'data-yellow': #FFE600,
'matrix-green': #00FF9F,
'void-black': #0D0D0D,
'deep-void': #080808,
'neural-white': #E6E6E6,
'grid-alpha': 0.1
);
// Dynamic Color Functions
@function neural-glow($color, $intensity: 1) {
$glow-color: map-get($neural-colors, $color);
@return (
0 0 #{10px * $intensity} $glow-color,
0 0 #{20px * $intensity} $glow-color
);
}
@function generate-glitch-animation($name, $color1, $color2) {
@keyframes #{$name} {
0%, 100% {
text-shadow: -2px 0 map-get($neural-colors, $color1),
2px 2px map-get($neural-colors, $color2);
}
25% {
text-shadow: 2px -2px map-get($neural-colors, $color1),
-2px -2px map-get($neural-colors, $color2);
}
50% {
text-shadow: 1px 3px map-get($neural-colors, $color1),
-3px -1px map-get($neural-colors, $color2);
}
75% {
text-shadow: -3px 1px map-get($neural-colors, $color1),
1px -1px map-get($neural-colors, $color2);
}
}
}
// Generate Multiple Glitch Animations
#{generate-glitch-animation('neural-glitch', 'synapse-blue', 'neural-red')}
#{generate-glitch-animation('data-glitch', 'data-yellow', 'matrix-green')}
// Advanced Mixins
@mixin neural-container($depth: 1) {
background: linear-gradient(
170deg,
rgba(map-get($neural-colors, 'deep-void'), 0.9),
rgba(map-get($neural-colors, 'void-black'), 0.95)
);
border: #{$depth}px solid map-get($neural-colors, 'synapse-blue');
box-shadow: neural-glow('synapse-blue', $depth);
backdrop-filter: blur(5px);
position: relative;
overflow: hidden;
&::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 1px;
background: linear-gradient(
90deg,
transparent,
map-get($neural-colors, 'synapse-blue'),
transparent
);
animation: neural-scan 2s linear infinite;
}
}
@mixin cyber-text($size, $color: 'synapse-blue') {
font-family: 'Orbitron', 'Rajdhani', sans-serif;
font-size: $size;
color: map-get($neural-colors, $color);
text-transform: uppercase;
letter-spacing: 2px;
position: relative;
text-shadow: 0 0 5px map-get($neural-colors, $color);
}
// Advanced Animations
@keyframes neural-scan {
0% { transform: translateX(-100%); opacity: 0; }
50% { opacity: 1; }
100% { transform: translateX(100%); opacity: 0; }
}
@keyframes data-pulse {
0%, 100% { opacity: 0.8; transform: scale(1); }
50% { opacity: 1; transform: scale(1.02); }
}
// Base Styles
body {
background-color: map-get($neural-colors, 'void-black');
background-image:
linear-gradient(
rgba(map-get($neural-colors, 'synapse-blue'),
map-get($neural-colors, 'grid-alpha')) 1px,
transparent 1px
),
linear-gradient(
90deg,
rgba(map-get($neural-colors, 'synapse-blue'),
map-get($neural-colors, 'grid-alpha')) 1px,
transparent 1px
);
background-size: 20px 20px;
color: map-get($neural-colors, 'neural-white');
}
// Advanced Components
.neural-interface {
@include neural-container(2);
padding: 20px;
margin: 20px;
clip-path: polygon(
0 20px,
20px 0,
calc(100% - 20px) 0,
100% 20px,
100% calc(100% - 20px),
calc(100% - 20px) 100%,
20px 100%,
0 calc(100% - 20px)
);
&__header {
@include cyber-text(2rem);
text-align: center;
margin-bottom: 20px;
animation: neural-glitch 5s infinite;
}
&__content {
position: relative;
z-index: 1;
}
}
.data-display {
@include neural-container(1);
padding: 15px;
margin: 10px 0;
animation: data-pulse 4s infinite;
&__label {
@include cyber-text(0.9rem, 'data-yellow');
margin-bottom: 5px;
}
&__value {
@include cyber-text(1.2rem, 'matrix-green');
}
}
// Interactive Elements
.neural-button {
@include neural-container(1);
padding: 10px 20px;
cursor: pointer;
transition: all 0.3s ease;
&:hover {
transform: translateY(-2px) scale(1.02);
box-shadow: neural-glow('synapse-blue', 2);
}
&:active {
transform: translateY(1px);
}
}
// Code Display
.code-matrix {
@include neural-container(1);
font-family: 'Source Code Pro', monospace;
padding: 20px;
margin: 15px 0;
&__line {
position: relative;
padding-left: 20px;
&::before {
content: '>';
position: absolute;
left: 0;
color: map-get($neural-colors, 'matrix-green');
}
}
}
// Status Indicators
.neural-status {
display: flex;
align-items: center;
gap: 10px;
&__indicator {
width: 10px;
height: 10px;
border-radius: 50%;
background: map-get($neural-colors, 'matrix-green');
animation: data-pulse 2s infinite;
}
&__text {
@include cyber-text(0.9rem, 'matrix-green');
}
}
// Advanced Grid Layout
.neural-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 20px;
padding: 20px;
&__item {
@include neural-container(1);
padding: 15px;
transition: transform 0.3s ease;
&:hover {
transform: translateZ(20px);
z-index: 2;
}
}
}
"""
# Compile SCSS to CSS
def compile_scss():
try:
return sass.compile(string=CYBERPUNK_SCSS)
except sass.CompileError as e:
print(f"SCSS Compilation Error: {e}")
return ""
# Advanced JavaScript for dynamic effects
NEURAL_JS = """
<script>
class NeuralInterface {
constructor() {
this.initializeEffects();
this.setupEventListeners();
}
initializeEffects() {
this.setupGlitchEffects();
this.setupDataStreams();
this.setupHolographicEffects();
}
setupGlitchEffects() {
document.querySelectorAll('.neural-interface__header').forEach(element => {
setInterval(() => {
if (Math.random() < 0.1) {
element.style.transform = `translate(${Math.random() * 4 - 2}px, ${Math.random() * 4 - 2}px)`;
setTimeout(() => element.style.transform = 'none', 100);
}
}, 2000);
});
}
setupDataStreams() {
const canvas = document.createElement('canvas');
document.body.appendChild(canvas);
canvas.style.position = 'fixed';
canvas.style.top = '0';
canvas.style.left = '0';
canvas.style.width = '100%';
canvas.style.height = '100%';
canvas.style.pointerEvents = 'none';
canvas.style.zIndex = '1';
canvas.style.opacity = '0.1';
const ctx = canvas.getContext('2d');
const matrix = "ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789@#$%^&*()*&^%";
const drops = [];
function initMatrix() {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
const columns = canvas.width / 20;
for(let i = 0; i < columns; i++) drops[i] = 1;
}
function drawMatrix() {
ctx.fillStyle = 'rgba(0, 0, 0, 0.05)';
ctx.fillRect(0, 0, canvas.width, canvas.height);
ctx.fillStyle = '#0F0';
ctx.font = '15px monospace';
for(let i = 0; i < drops.length; i++) {
const text = matrix[Math.floor(Math.random() * matrix.length)];
ctx.fillText(text, i * 20, drops[i] * 20);
if(drops[i] * 20 > canvas.height && Math.random() > 0.975)
drops[i] = 0;
drops[i]++;
}
}
window.addEventListener('resize', initMatrix);
initMatrix();
setInterval(drawMatrix, 50);
}
setupHolographicEffects() {
document.querySelectorAll('.neural-button').forEach(button => {
button.addEventListener('mousemove', e => {
const rect = button.getBoundingClientRect();
const x = e.clientX - rect.left;
const y = e.clientY - rect.top;
button.style.setProperty('--x', `${x}px`);
button.style.setProperty('--y', `${y}px`);
});
});
}
setupEventListeners() {
document.addEventListener('click', e => {
if (e.target.closest('.neural-button')) {
this.createRippleEffect(e);
}
});
}
createRippleEffect(e) {
const button = e.target.closest('.neural-button');
const ripple = document.createElement('span');
ripple.classList.add('ripple');
button.appendChild(ripple);
const rect = button.getBoundingClientRect();
const size = Math.max(rect.width, rect.height);
ripple.style.width = ripple.style.height = `${size}px`;
const x = e.clientX - rect.left - size/2;
const y = e.clientY - rect.top - size/2;
ripple.style.left = `${x}px`;
ripple.style.top = `${y}px`;
setTimeout(() => ripple.remove(), 600);
}
}
// Initialize Neural Interface
document.addEventListener('DOMContentLoaded', () => {
new NeuralInterface();
});
</script>
"""
# Function to process PDF files
def process_pdf(pdf_file):
if pdf_file is None:
return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0}
try:
session_id = str(uuid.uuid4())
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
temp_file.write(pdf_file)
pdf_path = temp_file.name
doc = fitz.open(pdf_path)
texts = [page.get_text() for page in doc]
page_images = []
for page in doc:
pix = page.get_pixmap()
img_bytes = pix.tobytes("png")
img_base64 = base64.b64encode(img_bytes).decode("utf-8")
page_images.append(img_base64)
total_pages = len(doc)
total_words = sum(len(text.split()) for text in texts)
doc.close()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.create_documents(texts)
vectorstore = FAISS.from_documents(chunks, embeddings)
index_path = os.path.join(FAISS_INDEX_DIR, session_id)
vectorstore.save_local(index_path)
user_vectorstores[session_id] = vectorstore
os.unlink(pdf_path)
pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words}
return session_id, f"βœ… Successfully processed {len(chunks)} text chunks from your PDF", pdf_state
except Exception as e:
if "pdf_path" in locals() and os.path.exists(pdf_path):
os.unlink(pdf_path)
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}
# New function to process Excel files
def process_excel(excel_file):
if excel_file is None:
return None, "No file uploaded", {"data_preview": "", "total_sheets": 0, "total_rows": 0}
try:
session_id = str(uuid.uuid4())
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as temp_file:
temp_file.write(excel_file)
excel_path = temp_file.name
# Read Excel file with pandas
excel_data = pd.ExcelFile(excel_path)
sheet_names = excel_data.sheet_names
all_texts = []
total_rows = 0
# Process each sheet
for sheet in sheet_names:
df = pd.read_excel(excel_path, sheet_name=sheet)
total_rows += len(df)
# Convert dataframe to text for vectorization
sheet_text = f"Sheet: {sheet}\n"
sheet_text += df.to_string(index=False)
all_texts.append(sheet_text)
# Generate HTML preview of first sheet
first_df = pd.read_excel(excel_path, sheet_name=0)
preview_rows = min(10, len(first_df))
data_preview = first_df.head(preview_rows).to_html(classes="excel-preview-table", index=False)
# Process for vectorstore
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.create_documents(all_texts)
vectorstore = FAISS.from_documents(chunks, embeddings)
index_path = os.path.join(FAISS_INDEX_DIR, session_id)
vectorstore.save_local(index_path)
user_vectorstores[session_id] = vectorstore
os.unlink(excel_path)
excel_state = {"data_preview": data_preview, "total_sheets": len(sheet_names), "total_rows": total_rows}
return session_id, f"βœ… Successfully processed {len(chunks)} text chunks from Excel file", excel_state
except Exception as e:
if "excel_path" in locals() and os.path.exists(excel_path):
os.unlink(excel_path)
return None, f"Error processing Excel file: {str(e)}", {"data_preview": "", "total_sheets": 0, "total_rows": 0}
# Function to analyze image using SmolDocling
def analyze_image(image_file):
"""
Basic image analysis function that doesn't rely on external models
"""
if image_file is None:
return "No image uploaded. Please upload an image to analyze."
try:
image = Image.open(image_file)
width, height = image.size
format = image.format
mode = image.mode
analysis = f"""## Technical Document Analysis
**Image Properties:**
- Dimensions: {width}x{height} pixels
- Format: {format}
- Color Mode: {mode}
**Technical Analysis:**
1. Document Quality:
- Resolution: {'High' if width > 2000 or height > 2000 else 'Medium' if width > 1000 or height > 1000 else 'Low'}
- Color Depth: {mode}
2. Recommendations:
- For text extraction, consider using PDF format
- For technical diagrams, ensure high resolution
- Consider OCR for text content
**Note:** For detailed technical analysis, please convert to PDF format
"""
return analysis
except Exception as e:
return f"Error analyzing image: {str(e)}\n\nPlease try using PDF format instead."
# Function to handle different file types
def process_file(file_data, file_type):
if file_data is None:
return None, "No file uploaded", None
if file_type == "pdf":
return process_pdf(file_data)
elif file_type == "excel":
return process_excel(file_data)
elif file_type == "image":
# For image files, we'll just use them directly for analysis
# But we'll return a session ID to maintain consistency
session_id = str(uuid.uuid4())
return session_id, "βœ… Image file ready for analysis", None
else:
return None, "Unsupported file type", None
# Function for speech-to-text conversion
def speech_to_text():
try:
r = sr.Recognizer()
with sr.Microphone() as source:
r.adjust_for_ambient_noise(source)
audio = r.listen(source)
text = r.recognize_google(audio)
return text
except sr.UnknownValueError:
return "Could not understand audio. Please try again."
except sr.RequestError as e:
return f"Error with speech recognition service: {e}"
except Exception as e:
return f"Error converting speech to text: {str(e)}"
# Function for text-to-speech conversion
def text_to_speech(text, history):
if not text or not history:
return None
try:
# Get the last bot response
last_response = history[-1][1]
# Convert text to speech
tts = pyttsx3.init()
tts.setProperty('rate', 150)
tts.setProperty('volume', 0.9)
tts.save_to_file(last_response, "temp_output.mp3")
tts.runAndWait()
return "temp_output.mp3"
except Exception as e:
print(f"Error in text-to-speech: {e}")
return None
# Function to generate chatbot responses with Tech theme
def generate_response(message, session_id, model_name, history, web_search_enabled=True):
if not message:
return history
try:
context = ""
if session_id and session_id in user_vectorstores:
vectorstore = user_vectorstores[session_id]
docs = vectorstore.similarity_search(message, k=3)
if docs:
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
# Check if it's a GitHub repo search and web search is enabled
if web_search_enabled and re.match(r'^/github\s+.+', message, re.IGNORECASE):
query = re.sub(r'^/github\s+', '', message, flags=re.IGNORECASE)
repo_results = search_github_repos(query)
if repo_results:
response = "**GitHub Repository Search Results:**\n\n"
for repo in repo_results[:3]: # Limit to top 3 results
response += f"**[{repo['name']}]({repo['html_url']})**\n"
if repo['description']:
response += f"{repo['description']}\n"
response += f"⭐ {repo['stargazers_count']} | 🍴 {repo['forks_count']} | Language: {repo['language'] or 'Not specified'}\n"
response += f"Updated: {repo['updated_at'][:10]}\n\n"
history.append((message, response))
return history
else:
history.append((message, "No GitHub repositories found for your query."))
return history
# Check if it's a Stack Overflow search and web search is enabled
if web_search_enabled and re.match(r'^/stack\s+.+', message, re.IGNORECASE):
query = re.sub(r'^/stack\s+', '', message, flags=re.IGNORECASE)
qa_results = search_stackoverflow(query)
if qa_results:
response = "**Stack Overflow Search Results:**\n\n"
for qa in qa_results[:3]: # Limit to top 3 results
response += f"**[{qa['title']}]({qa['link']})**\n"
response += f"Score: {qa['score']} | Answers: {qa['answer_count']}\n"
if 'tags' in qa and qa['tags']:
response += f"Tags: {', '.join(qa['tags'][:5])}\n"
response += f"Asked: {qa['creation_date']}\n\n"
history.append((message, response))
return history
else:
history.append((message, "No Stack Overflow questions found for your query."))
return history
# Check if it's a code explanation request
code_match = re.search(r'/explain\s+```(?:.+?)?\n(.+?)```', message, re.DOTALL)
if code_match:
code = code_match.group(1).strip()
explanation = explain_code(code)
history.append((message, explanation))
return history
system_prompt = "You are a technical assistant specializing in software development, programming, and IT topics."
system_prompt += " Format code snippets with proper markdown code blocks with language specified."
system_prompt += " For technical explanations, be precise and include examples where helpful."
if context:
system_prompt += " Use the following context to answer the question if relevant: " + context
completion = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
],
temperature=0.7,
max_tokens=1024
)
response = completion.choices[0].message.content
history.append((message, response))
return history
except Exception as e:
history.append((message, f"Error generating response: {str(e)}"))
return history
# Functions to update PDF viewer
def update_pdf_viewer(pdf_state):
if not pdf_state["total_pages"]:
return 0, None, "No PDF uploaded yet"
try:
img_data = base64.b64decode(pdf_state["page_images"][0])
img = Image.open(io.BytesIO(img_data))
return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}"
except Exception as e:
print(f"Error decoding image: {e}")
return 0, None, "Error displaying PDF"
def update_image(page_num, pdf_state):
if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]:
return None
try:
img_data = base64.b64decode(pdf_state["page_images"][page_num - 1])
img = Image.open(io.BytesIO(img_data))
return img
except Exception as e:
print(f"Error decoding image: {e}")
return None
# GitHub API integration
def search_github_repos(query, sort="stars", order="desc", per_page=10):
"""Search for GitHub repositories"""
try:
github_token = os.getenv("GITHUB_TOKEN", "")
headers = {}
if github_token:
headers["Authorization"] = f"token {github_token}"
params = {
"q": query,
"sort": sort,
"order": order,
"per_page": per_page
}
response = requests.get(
"https://api.github.com/search/repositories",
headers=headers,
params=params
)
if response.status_code != 200:
print(f"GitHub API Error: {response.status_code} - {response.text}")
return []
data = response.json()
return data.get("items", [])
except Exception as e:
print(f"Error in GitHub search: {e}")
return []
# Stack Overflow API integration
def search_stackoverflow(query, sort="votes", site="stackoverflow", pagesize=10):
"""Search for questions on Stack Overflow"""
try:
params = {
"order": "desc",
"sort": sort,
"site": site,
"pagesize": pagesize,
"intitle": query
}
response = requests.get(
"https://api.stackexchange.com/2.3/search/advanced",
params=params
)
if response.status_code != 200:
print(f"Stack Exchange API Error: {response.status_code} - {response.text}")
return []
data = response.json()
# Process results to convert Unix timestamps to readable dates
for item in data.get("items", []):
if "creation_date" in item:
item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d")
return data.get("items", [])
except Exception as e:
print(f"Error in Stack Overflow search: {e}")
return []
def get_stackoverflow_answers(question_id, site="stackoverflow"):
"""Get answers for a specific question on Stack Overflow"""
try:
params = {
"order": "desc",
"sort": "votes",
"site": site,
"filter": "withbody" # Include the answer body in the response
}
response = requests.get(
f"https://api.stackexchange.com/2.3/questions/{question_id}/answers",
params=params
)
if response.status_code != 200:
print(f"Stack Exchange API Error: {response.status_code} - {response.text}")
return []
data = response.json()
# Process results
for item in data.get("items", []):
if "creation_date" in item:
item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d")
return data.get("items", [])
except Exception as e:
print(f"Error getting Stack Overflow answers: {e}")
return []
def explain_code(code):
"""Explain code using LLM"""
try:
system_prompt = "You are an expert programmer and code reviewer. Your task is to explain the provided code in a clear, concise manner. Include:"
system_prompt += "\n1. What the code does (high-level overview)"
system_prompt += "\n2. Key functions/components and their purposes"
system_prompt += "\n3. Potential issues or optimization opportunities"
system_prompt += "\n4. Any best practices that are followed or violated"
completion = client.chat.completions.create(
model="llama3-70b-8192", # Using more capable model for code explanation
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Explain this code:\n```\n{code}\n```"}
],
temperature=0.3,
max_tokens=1024
)
explanation = completion.choices[0].message.content
return f"**Code Explanation:**\n\n{explanation}"
except Exception as e:
return f"Error explaining code: {str(e)}"
def perform_repo_search(query, language, sort_by, min_stars):
"""Perform GitHub repository search with UI parameters"""
try:
if not query:
return "Please enter a search query"
# Build the search query with filters
search_query = query
if language and language != "any":
search_query += f" language:{language}"
if min_stars and min_stars != "0":
search_query += f" stars:>={min_stars}"
# Map sort_by to GitHub API parameters
sort_param = "stars"
if sort_by == "updated":
sort_param = "updated"
elif sort_by == "forks":
sort_param = "forks"
results = search_github_repos(search_query, sort=sort_param)
if not results:
return "No repositories found. Try different search terms."
# Format results as markdown
markdown = "## GitHub Repository Search Results\n\n"
for i, repo in enumerate(results, 1):
markdown += f"### {i}. [{repo['full_name']}]({repo['html_url']})\n\n"
if repo['description']:
markdown += f"{repo['description']}\n\n"
markdown += f"**Language:** {repo['language'] or 'Not specified'}\n"
markdown += f"**Stars:** {repo['stargazers_count']} | **Forks:** {repo['forks_count']} | **Watchers:** {repo['watchers_count']}\n"
markdown += f"**Created:** {repo['created_at'][:10]} | **Updated:** {repo['updated_at'][:10]}\n\n"
if repo.get('topics'):
markdown += f"**Topics:** {', '.join(repo['topics'])}\n\n"
if repo.get('license') and repo['license'].get('name'):
markdown += f"**License:** {repo['license']['name']}\n\n"
markdown += f"[View Repository]({repo['html_url']}) | [Clone URL]({repo['clone_url']})\n\n"
markdown += "---\n\n"
return markdown
except Exception as e:
return f"Error searching for repositories: {str(e)}"
def perform_stack_search(query, tag, sort_by):
"""Perform Stack Overflow search with UI parameters"""
try:
if not query:
return "Please enter a search query"
# Add tag to query if specified
if tag and tag != "any":
query_with_tag = f"{query} [tag:{tag}]"
else:
query_with_tag = query
# Map sort_by to Stack Exchange API parameters
sort_param = "votes"
if sort_by == "newest":
sort_param = "creation"
elif sort_by == "activity":
sort_param = "activity"
results = search_stackoverflow(query_with_tag, sort=sort_param)
if not results:
return "No questions found. Try different search terms."
# Format results as markdown
markdown = "## Stack Overflow Search Results\n\n"
for i, question in enumerate(results, 1):
markdown += f"### {i}. [{question['title']}]({question['link']})\n\n"
# Score and answer stats
markdown += f"**Score:** {question['score']} | **Answers:** {question['answer_count']}"
if question.get('is_answered'):
markdown += " βœ“ (Accepted answer available)"
markdown += "\n\n"
# Tags
if question.get('tags'):
markdown += "**Tags:** "
for tag in question['tags']:
markdown += f"`{tag}` "
markdown += "\n\n"
# Asked info
markdown += f"**Asked:** {question['creation_date']} | **Views:** {question.get('view_count', 'N/A')}\n\n"
markdown += f"[View Question]({question['link']})\n\n"
markdown += "---\n\n"
return markdown
except Exception as e:
return f"Error searching Stack Overflow: {str(e)}"
def detect_language(file_extension):
"""Map file extensions to programming languages"""
language_map = {
".py": "Python",
".js": "JavaScript",
".java": "Java",
".cpp": "C++",
".c": "C",
".cs": "C#",
".php": "PHP",
".rb": "Ruby",
".go": "Go",
".rs": "Rust",
".swift": "Swift",
".kt": "Kotlin",
".ts": "TypeScript",
".html": "HTML",
".css": "CSS",
".sql": "SQL",
".r": "R",
".m": "Objective-C/MATLAB",
".h": "C/C++ Header",
".hpp": "C++ Header",
".jsx": "React JSX",
".tsx": "React TSX",
".vue": "Vue.js",
".scala": "Scala",
".pl": "Perl",
".sh": "Shell Script",
".bash": "Bash Script",
".ps1": "PowerShell",
".yaml": "YAML",
".yml": "YAML",
".json": "JSON",
".xml": "XML",
".toml": "TOML",
".ini": "INI"
}
return language_map.get(file_extension.lower(), "Unknown")
def analyze_code(code_file):
"""Analyze code files and provide insights"""
if code_file is None:
return "No file uploaded. Please upload a code file to analyze."
try:
# Get file extension
file_extension = os.path.splitext(code_file.name)[1]
language = detect_language(file_extension)
# Read the file content
content = code_file.read().decode('utf-8', errors='ignore')
# Basic code metrics
total_lines = len(content.splitlines())
blank_lines = len([line for line in content.splitlines() if not line.strip()])
code_lines = total_lines - blank_lines
# Calculate complexity metrics
complexity_metrics = calculate_complexity(content, language)
# Generate analysis using LLM
analysis_prompt = f"""Analyze this {language} code and provide insights about:
1. Code structure and organization
2. Potential improvements or best practices
3. Security considerations
4. Performance implications
5. Maintainability factors
Code metrics:
- Total lines: {total_lines}
- Code lines: {code_lines}
- Blank lines: {blank_lines}
{complexity_metrics}
First 1000 characters of code:
{content[:1000]}...
"""
completion = client.chat.completions.create(
model="llama3-70b-8192",
messages=[
{"role": "system", "content": "You are an expert code reviewer and technical architect."},
{"role": "user", "content": analysis_prompt}
],
temperature=0.3,
max_tokens=1500
)
# Format the analysis
analysis = f"""## Code Analysis Report
**File Type:** {language}
### Code Metrics
- Total Lines: {total_lines}
- Code Lines: {code_lines}
- Blank Lines: {blank_lines}
### Complexity Analysis
{complexity_metrics}
### Expert Analysis
{completion.choices[0].message.content}
### Recommendations
1. Consider using a linter specific to {language}
2. Review the security considerations mentioned above
3. Consider automated testing to validate the code
4. Document any complex algorithms or business logic
"""
return analysis
except Exception as e:
return f"Error analyzing code: {str(e)}\n\nPlease ensure the file is properly formatted and encoded."
def calculate_complexity(content, language):
"""Calculate various complexity metrics based on the language"""
try:
# Count function/method definitions
function_patterns = {
"Python": r"def\s+\w+\s*\(",
"JavaScript": r"function\s+\w+\s*\(|const\s+\w+\s*=\s*\([^)]*\)\s*=>",
"Java": r"(public|private|protected)?\s*\w+\s+\w+\s*\([^)]*\)\s*\{",
"C++": r"\w+\s+\w+\s*\([^)]*\)\s*\{",
}
pattern = function_patterns.get(language, r"\w+\s+\w+\s*\([^)]*\)")
function_count = len(re.findall(pattern, content))
# Calculate cyclomatic complexity (rough estimate)
decision_patterns = [
r"\bif\b",
r"\bwhile\b",
r"\bfor\b",
r"\bcase\b",
r"\bcatch\b",
r"\b&&\b",
r"\b\|\|\b"
]
decision_points = sum(len(re.findall(p, content)) for p in decision_patterns)
# Estimate maintainability
avg_line_length = sum(len(line) for line in content.splitlines()) / len(content.splitlines()) if content.splitlines() else 0
return f"""**Complexity Metrics:**
- Estimated Function Count: {function_count}
- Decision Points: {decision_points}
- Average Line Length: {avg_line_length:.2f} characters
- Cyclomatic Complexity Estimate: {decision_points + 1}
"""
except Exception as e:
return f"Error calculating complexity: {str(e)}"
def update_status_with_animation(status):
return f"""
<div class="status-message">
<div class="loading-container">
<div class="loading-bar"></div>
</div>
> {status}
</div>
"""
# Update the analysis results display
def format_analysis_results(analysis):
return f"""
<div class="analysis-container">
<div class="analysis-header">> ANALYSIS COMPLETE</div>
{analysis}
<div class="loading-container">
<div class="loading-bar"></div>
</div>
</div>
"""
def format_code_metrics(metrics):
return f"""
<div class="metric-card">
<div style="color: var(--neon-yellow);">SYSTEM METRICS</div>
<div style="margin-top: 10px;">
{metrics}
</div>
</div>
"""
# Add cyberpunk UI sound effects
def play_interface_sound(sound_type):
sounds = {
"hover": "hover.mp3",
"click": "click.mp3",
"success": "success.mp3",
"error": "error.mp3"
}
return gr.Audio(value=sounds.get(sound_type), autoplay=True, visible=False)
# Create the Gradio interface with advanced cyberpunk styling
def create_cyberpunk_interface():
css = compile_scss()
with gr.Blocks(css=css, head=NEURAL_JS) as demo:
current_session_id = gr.State(None)
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
excel_state = gr.State({"data_preview": "", "total_sheets": 0, "total_rows": 0})
file_type = gr.State("none")
audio_status = gr.State("Ready")
gr.HTML("""
<div class="neural-interface">
<div class="neural-interface__header">TECH-VISION_v3.0</div>
<div class="neural-status">
<div class="neural-status__indicator"></div>
<div class="neural-status__text">SYSTEM ONLINE</div>
</div>
</div>
""")
with gr.Row(elem_classes="neural-grid"):
with gr.Column(scale=1, min_width=300):
with gr.Tabs():
with gr.TabItem("[SYS:SCAN] Code Analysis"):
gr.HTML("""
<div class="upload-container">
<div style="color: var(--neon-blue); margin-bottom: 10px;">
> INITIATE CODE SCAN
</div>
""")
code_file = gr.File(
label="UPLOAD SOURCE CODE",
file_types=[".py", ".js", ".java", ".cpp", ".c", ".cs", ".php", ".rb",
".go", ".rs", ".swift", ".kt", ".ts", ".html", ".css",
".sql", ".r", ".m", ".h", ".hpp", ".jsx", ".tsx",
".vue", ".scala", ".pl", ".sh", ".bash", ".ps1",
".yaml", ".yml", ".json", ".xml", ".toml", ".ini"],
type="binary"
)
gr.HTML("</div>")
code_analyze_btn = gr.Button("INITIATE ANALYSIS", elem_classes="primary-btn")
with gr.TabItem("PDF"):
pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary")
pdf_upload_button = gr.Button("Process PDF", variant="primary")
with gr.TabItem("Excel"):
excel_file = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xls"], type="binary")
excel_upload_button = gr.Button("Process Excel", variant="primary")
with gr.TabItem("Image"):
image_input = gr.File(
label="Upload Image",
file_types=["image"],
type="filepath"
)
analyze_btn = gr.Button("Analyze Image")
file_status = gr.Markdown("No file uploaded yet")
# Model selector
model_dropdown = gr.Dropdown(
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
value="llama3-70b-8192",
label="Select Groq Model"
)
with gr.Column(scale=2, min_width=600):
with gr.Tabs():
with gr.TabItem("PDF Viewer"):
with gr.Column(elem_classes="pdf-viewer-container"):
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
pdf_stats = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box")
with gr.TabItem("Excel Viewer"):
excel_preview = gr.HTML(label="Excel Preview", elem_classes="file-preview")
excel_stats = gr.Markdown("No Excel file uploaded yet", elem_classes="stats-box")
with gr.TabItem("Image Analysis"):
image_preview = gr.Image(label="Image Preview", type="pil")
image_analysis_results = gr.Markdown("Upload an image and click 'Analyze Image' to see analysis results")
with gr.TabItem("Code Analysis Results"):
analysis_results = gr.Markdown("Upload a code file and click 'Analyze Code' to see analysis results")
with gr.Row():
copy_btn = gr.Button("πŸ“‹ Copy Analysis")
export_btn = gr.Button("πŸ“₯ Export Report")
# Audio visualization elements
with gr.Row(elem_classes="container"):
with gr.Column():
audio_vis = gr.HTML("""
<div class="audio-visualization">
<div class="audio-bar" style="height: 5px;"></div>
<div class="audio-bar" style="height: 12px;"></div>
<div class="audio-bar" style="height: 18px;"></div>
<div class="audio-bar" style="height: 15px;"></div>
<div class="audio-bar" style="height: 10px;"></div>
<div class="audio-bar" style="height: 20px;"></div>
<div class="audio-bar" style="height: 14px;"></div>
<div class="audio-bar" style="height: 8px;"></div>
</div>
""", visible=False)
audio_status_display = gr.Markdown("", elem_classes="audio-status")
# Chat interface
with gr.Row(elem_classes="container"):
with gr.Column(scale=2, min_width=600):
chatbot = gr.Chatbot(
height=400,
show_copy_button=True,
elem_classes="chat-container",
type="messages" # Use the new messages format
)
with gr.Row():
msg = gr.Textbox(
show_label=False,
placeholder="Ask about your document or click the microphone to speak...",
scale=5
)
voice_btn = gr.Button("🎀", elem_classes="voice-btn")
send_btn = gr.Button("Send", scale=1)
with gr.Row(elem_classes="audio-controls"):
clear_btn = gr.Button("Clear Conversation")
speak_btn = gr.Button("πŸ”Š Speak Response", elem_classes="speak-btn")
audio_player = gr.Audio(label="Response Audio", type="filepath", visible=False)
# Event Handlers for PDF processing
pdf_upload_button.click(
lambda x: ("pdf", x),
inputs=[pdf_file],
outputs=[file_type, file_status]
).then(
process_pdf,
inputs=[pdf_file],
outputs=[current_session_id, file_status, pdf_state]
).then(
update_pdf_viewer,
inputs=[pdf_state],
outputs=[page_slider, pdf_image, pdf_stats]
)
# Event Handlers for Excel processing
def update_excel_preview(state):
if not state:
return "", "No Excel file uploaded yet"
preview = state.get("data_preview", "")
sheets = state.get("total_sheets", 0)
rows = state.get("total_rows", 0)
stats = f"**Excel Statistics:**\nSheets: {sheets}\nTotal Rows: {rows}"
return preview, stats
excel_upload_button.click(
lambda x: ("excel", x),
inputs=[excel_file],
outputs=[file_type, file_status]
).then(
process_excel,
inputs=[excel_file],
outputs=[current_session_id, file_status, excel_state]
).then(
update_excel_preview,
inputs=[excel_state],
outputs=[excel_preview, excel_stats]
)
# Event Handlers for Image Analysis
analyze_btn.click(
lambda x: ("image", x),
inputs=[image_input],
outputs=[file_type, file_status]
).then(
analyze_image,
inputs=[image_input],
outputs=[image_analysis_results]
).then(
lambda x: Image.open(x) if x else None,
inputs=[image_input],
outputs=[image_preview]
)
# Event Handlers for Code Analysis
code_analyze_btn.click(
update_status_with_animation,
inputs=[],
outputs=[file_status]
).then(
analyze_code,
inputs=[code_file],
outputs=[analysis_results]
).then(
format_analysis_results,
inputs=[analysis_results],
outputs=[analysis_results]
)
# Chat message handling
msg.submit(
generate_response,
inputs=[msg, current_session_id, model_dropdown, chatbot],
outputs=[chatbot]
).then(lambda: "", None, [msg])
send_btn.click(
generate_response,
inputs=[msg, current_session_id, model_dropdown, chatbot],
outputs=[chatbot]
).then(lambda: "", None, [msg])
# Improved speech-to-text with visual feedback
voice_btn.click(
speech_to_text,
inputs=[audio_status],
outputs=[audio_status_display, audio_vis, msg]
)
# Improved text-to-speech with visual feedback
speak_btn.click(
text_to_speech,
inputs=[audio_status, chatbot],
outputs=[audio_status_display, audio_vis, audio_player]
).then(
lambda x: gr.update(visible=True) if x else gr.update(visible=False),
inputs=[audio_player],
outputs=[audio_player]
)
# Page navigation for PDF
page_slider.change(
update_image,
inputs=[page_slider, pdf_state],
outputs=[pdf_image]
)
# Clear conversation and reset UI
clear_btn.click(
lambda: (
[], None, "No file uploaded yet",
{"page_images": [], "total_pages": 0, "total_words": 0},
{"data_preview": "", "total_sheets": 0, "total_rows": 0},
"none", 0, None, "No PDF uploaded yet", "",
"No Excel file uploaded yet", None,
"Upload an image and click 'Analyze Image' to see results", None,
gr.update(visible=False), "Ready"
),
None,
[chatbot, current_session_id, file_status, pdf_state, excel_state,
file_type, page_slider, pdf_image, pdf_stats, excel_preview,
excel_stats, image_preview, image_analysis_results, audio_player,
audio_vis, audio_status_display]
)
# Add footer with creator attribution
gr.HTML("""
<div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;">
Created by Calvin Allen Crawford
</div>
""")
return demo
# Launch the app
if __name__ == "__main__":
demo = create_cyberpunk_interface()
demo.launch()