Spaces:
Build error
Build error
# Standard library imports | |
import os | |
import tempfile | |
import uuid | |
import base64 | |
import io | |
import json | |
import re | |
from datetime import datetime, timedelta | |
# Third-party imports | |
import gradio as gr | |
import groq | |
import numpy as np | |
import pandas as pd | |
import openpyxl | |
import requests | |
import fitz # PyMuPDF | |
from PIL import Image | |
from dotenv import load_dotenv | |
from transformers import AutoProcessor, AutoModelForVision2Seq | |
import torch | |
import sass | |
from pathlib import Path | |
import pyttsx3 | |
import speech_recognition as sr | |
# LangChain imports | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# Load environment variables | |
load_dotenv() | |
client = groq.Client(api_key=os.getenv("GROQ_TECH_API_KEY")) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
# Directory to store FAISS indexes | |
FAISS_INDEX_DIR = "faiss_indexes_tech" | |
if not os.path.exists(FAISS_INDEX_DIR): | |
os.makedirs(FAISS_INDEX_DIR) | |
# Dictionary to store user-specific vectorstores | |
user_vectorstores = {} | |
# Advanced SCSS with cyberpunk styling | |
CYBERPUNK_SCSS = """ | |
// Advanced Cyberpunk Theme with Neural Network Aesthetics | |
@use "sass:math"; | |
@use "sass:color"; | |
// Neural Color System | |
$neural-colors: ( | |
'synapse-blue': #00F3FF, | |
'neural-red': #FF0033, | |
'data-yellow': #FFE600, | |
'matrix-green': #00FF9F, | |
'void-black': #0D0D0D, | |
'deep-void': #080808, | |
'neural-white': #E6E6E6, | |
'grid-alpha': 0.1 | |
); | |
// Dynamic Color Functions | |
@function neural-glow($color, $intensity: 1) { | |
$glow-color: map-get($neural-colors, $color); | |
@return ( | |
0 0 #{10px * $intensity} $glow-color, | |
0 0 #{20px * $intensity} $glow-color | |
); | |
} | |
@function generate-glitch-animation($name, $color1, $color2) { | |
@keyframes #{$name} { | |
0%, 100% { | |
text-shadow: -2px 0 map-get($neural-colors, $color1), | |
2px 2px map-get($neural-colors, $color2); | |
} | |
25% { | |
text-shadow: 2px -2px map-get($neural-colors, $color1), | |
-2px -2px map-get($neural-colors, $color2); | |
} | |
50% { | |
text-shadow: 1px 3px map-get($neural-colors, $color1), | |
-3px -1px map-get($neural-colors, $color2); | |
} | |
75% { | |
text-shadow: -3px 1px map-get($neural-colors, $color1), | |
1px -1px map-get($neural-colors, $color2); | |
} | |
} | |
} | |
// Generate Multiple Glitch Animations | |
#{generate-glitch-animation('neural-glitch', 'synapse-blue', 'neural-red')} | |
#{generate-glitch-animation('data-glitch', 'data-yellow', 'matrix-green')} | |
// Advanced Mixins | |
@mixin neural-container($depth: 1) { | |
background: linear-gradient( | |
170deg, | |
rgba(map-get($neural-colors, 'deep-void'), 0.9), | |
rgba(map-get($neural-colors, 'void-black'), 0.95) | |
); | |
border: #{$depth}px solid map-get($neural-colors, 'synapse-blue'); | |
box-shadow: neural-glow('synapse-blue', $depth); | |
backdrop-filter: blur(5px); | |
position: relative; | |
overflow: hidden; | |
&::before { | |
content: ''; | |
position: absolute; | |
top: 0; | |
left: 0; | |
right: 0; | |
height: 1px; | |
background: linear-gradient( | |
90deg, | |
transparent, | |
map-get($neural-colors, 'synapse-blue'), | |
transparent | |
); | |
animation: neural-scan 2s linear infinite; | |
} | |
} | |
@mixin cyber-text($size, $color: 'synapse-blue') { | |
font-family: 'Orbitron', 'Rajdhani', sans-serif; | |
font-size: $size; | |
color: map-get($neural-colors, $color); | |
text-transform: uppercase; | |
letter-spacing: 2px; | |
position: relative; | |
text-shadow: 0 0 5px map-get($neural-colors, $color); | |
} | |
// Advanced Animations | |
@keyframes neural-scan { | |
0% { transform: translateX(-100%); opacity: 0; } | |
50% { opacity: 1; } | |
100% { transform: translateX(100%); opacity: 0; } | |
} | |
@keyframes data-pulse { | |
0%, 100% { opacity: 0.8; transform: scale(1); } | |
50% { opacity: 1; transform: scale(1.02); } | |
} | |
// Base Styles | |
body { | |
background-color: map-get($neural-colors, 'void-black'); | |
background-image: | |
linear-gradient( | |
rgba(map-get($neural-colors, 'synapse-blue'), | |
map-get($neural-colors, 'grid-alpha')) 1px, | |
transparent 1px | |
), | |
linear-gradient( | |
90deg, | |
rgba(map-get($neural-colors, 'synapse-blue'), | |
map-get($neural-colors, 'grid-alpha')) 1px, | |
transparent 1px | |
); | |
background-size: 20px 20px; | |
color: map-get($neural-colors, 'neural-white'); | |
} | |
// Advanced Components | |
.neural-interface { | |
@include neural-container(2); | |
padding: 20px; | |
margin: 20px; | |
clip-path: polygon( | |
0 20px, | |
20px 0, | |
calc(100% - 20px) 0, | |
100% 20px, | |
100% calc(100% - 20px), | |
calc(100% - 20px) 100%, | |
20px 100%, | |
0 calc(100% - 20px) | |
); | |
&__header { | |
@include cyber-text(2rem); | |
text-align: center; | |
margin-bottom: 20px; | |
animation: neural-glitch 5s infinite; | |
} | |
&__content { | |
position: relative; | |
z-index: 1; | |
} | |
} | |
.data-display { | |
@include neural-container(1); | |
padding: 15px; | |
margin: 10px 0; | |
animation: data-pulse 4s infinite; | |
&__label { | |
@include cyber-text(0.9rem, 'data-yellow'); | |
margin-bottom: 5px; | |
} | |
&__value { | |
@include cyber-text(1.2rem, 'matrix-green'); | |
} | |
} | |
// Interactive Elements | |
.neural-button { | |
@include neural-container(1); | |
padding: 10px 20px; | |
cursor: pointer; | |
transition: all 0.3s ease; | |
&:hover { | |
transform: translateY(-2px) scale(1.02); | |
box-shadow: neural-glow('synapse-blue', 2); | |
} | |
&:active { | |
transform: translateY(1px); | |
} | |
} | |
// Code Display | |
.code-matrix { | |
@include neural-container(1); | |
font-family: 'Source Code Pro', monospace; | |
padding: 20px; | |
margin: 15px 0; | |
&__line { | |
position: relative; | |
padding-left: 20px; | |
&::before { | |
content: '>'; | |
position: absolute; | |
left: 0; | |
color: map-get($neural-colors, 'matrix-green'); | |
} | |
} | |
} | |
// Status Indicators | |
.neural-status { | |
display: flex; | |
align-items: center; | |
gap: 10px; | |
&__indicator { | |
width: 10px; | |
height: 10px; | |
border-radius: 50%; | |
background: map-get($neural-colors, 'matrix-green'); | |
animation: data-pulse 2s infinite; | |
} | |
&__text { | |
@include cyber-text(0.9rem, 'matrix-green'); | |
} | |
} | |
// Advanced Grid Layout | |
.neural-grid { | |
display: grid; | |
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); | |
gap: 20px; | |
padding: 20px; | |
&__item { | |
@include neural-container(1); | |
padding: 15px; | |
transition: transform 0.3s ease; | |
&:hover { | |
transform: translateZ(20px); | |
z-index: 2; | |
} | |
} | |
} | |
""" | |
# Compile SCSS to CSS | |
def compile_scss(): | |
try: | |
return sass.compile(string=CYBERPUNK_SCSS) | |
except sass.CompileError as e: | |
print(f"SCSS Compilation Error: {e}") | |
return "" | |
# Advanced JavaScript for dynamic effects | |
NEURAL_JS = """ | |
<script> | |
class NeuralInterface { | |
constructor() { | |
this.initializeEffects(); | |
this.setupEventListeners(); | |
} | |
initializeEffects() { | |
this.setupGlitchEffects(); | |
this.setupDataStreams(); | |
this.setupHolographicEffects(); | |
} | |
setupGlitchEffects() { | |
document.querySelectorAll('.neural-interface__header').forEach(element => { | |
setInterval(() => { | |
if (Math.random() < 0.1) { | |
element.style.transform = `translate(${Math.random() * 4 - 2}px, ${Math.random() * 4 - 2}px)`; | |
setTimeout(() => element.style.transform = 'none', 100); | |
} | |
}, 2000); | |
}); | |
} | |
setupDataStreams() { | |
const canvas = document.createElement('canvas'); | |
document.body.appendChild(canvas); | |
canvas.style.position = 'fixed'; | |
canvas.style.top = '0'; | |
canvas.style.left = '0'; | |
canvas.style.width = '100%'; | |
canvas.style.height = '100%'; | |
canvas.style.pointerEvents = 'none'; | |
canvas.style.zIndex = '1'; | |
canvas.style.opacity = '0.1'; | |
const ctx = canvas.getContext('2d'); | |
const matrix = "ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789@#$%^&*()*&^%"; | |
const drops = []; | |
function initMatrix() { | |
canvas.width = window.innerWidth; | |
canvas.height = window.innerHeight; | |
const columns = canvas.width / 20; | |
for(let i = 0; i < columns; i++) drops[i] = 1; | |
} | |
function drawMatrix() { | |
ctx.fillStyle = 'rgba(0, 0, 0, 0.05)'; | |
ctx.fillRect(0, 0, canvas.width, canvas.height); | |
ctx.fillStyle = '#0F0'; | |
ctx.font = '15px monospace'; | |
for(let i = 0; i < drops.length; i++) { | |
const text = matrix[Math.floor(Math.random() * matrix.length)]; | |
ctx.fillText(text, i * 20, drops[i] * 20); | |
if(drops[i] * 20 > canvas.height && Math.random() > 0.975) | |
drops[i] = 0; | |
drops[i]++; | |
} | |
} | |
window.addEventListener('resize', initMatrix); | |
initMatrix(); | |
setInterval(drawMatrix, 50); | |
} | |
setupHolographicEffects() { | |
document.querySelectorAll('.neural-button').forEach(button => { | |
button.addEventListener('mousemove', e => { | |
const rect = button.getBoundingClientRect(); | |
const x = e.clientX - rect.left; | |
const y = e.clientY - rect.top; | |
button.style.setProperty('--x', `${x}px`); | |
button.style.setProperty('--y', `${y}px`); | |
}); | |
}); | |
} | |
setupEventListeners() { | |
document.addEventListener('click', e => { | |
if (e.target.closest('.neural-button')) { | |
this.createRippleEffect(e); | |
} | |
}); | |
} | |
createRippleEffect(e) { | |
const button = e.target.closest('.neural-button'); | |
const ripple = document.createElement('span'); | |
ripple.classList.add('ripple'); | |
button.appendChild(ripple); | |
const rect = button.getBoundingClientRect(); | |
const size = Math.max(rect.width, rect.height); | |
ripple.style.width = ripple.style.height = `${size}px`; | |
const x = e.clientX - rect.left - size/2; | |
const y = e.clientY - rect.top - size/2; | |
ripple.style.left = `${x}px`; | |
ripple.style.top = `${y}px`; | |
setTimeout(() => ripple.remove(), 600); | |
} | |
} | |
// Initialize Neural Interface | |
document.addEventListener('DOMContentLoaded', () => { | |
new NeuralInterface(); | |
}); | |
</script> | |
""" | |
# Function to process PDF files | |
def process_pdf(pdf_file): | |
if pdf_file is None: | |
return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0} | |
try: | |
session_id = str(uuid.uuid4()) | |
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file: | |
temp_file.write(pdf_file) | |
pdf_path = temp_file.name | |
doc = fitz.open(pdf_path) | |
texts = [page.get_text() for page in doc] | |
page_images = [] | |
for page in doc: | |
pix = page.get_pixmap() | |
img_bytes = pix.tobytes("png") | |
img_base64 = base64.b64encode(img_bytes).decode("utf-8") | |
page_images.append(img_base64) | |
total_pages = len(doc) | |
total_words = sum(len(text.split()) for text in texts) | |
doc.close() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
chunks = text_splitter.create_documents(texts) | |
vectorstore = FAISS.from_documents(chunks, embeddings) | |
index_path = os.path.join(FAISS_INDEX_DIR, session_id) | |
vectorstore.save_local(index_path) | |
user_vectorstores[session_id] = vectorstore | |
os.unlink(pdf_path) | |
pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words} | |
return session_id, f"β Successfully processed {len(chunks)} text chunks from your PDF", pdf_state | |
except Exception as e: | |
if "pdf_path" in locals() and os.path.exists(pdf_path): | |
os.unlink(pdf_path) | |
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0} | |
# New function to process Excel files | |
def process_excel(excel_file): | |
if excel_file is None: | |
return None, "No file uploaded", {"data_preview": "", "total_sheets": 0, "total_rows": 0} | |
try: | |
session_id = str(uuid.uuid4()) | |
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as temp_file: | |
temp_file.write(excel_file) | |
excel_path = temp_file.name | |
# Read Excel file with pandas | |
excel_data = pd.ExcelFile(excel_path) | |
sheet_names = excel_data.sheet_names | |
all_texts = [] | |
total_rows = 0 | |
# Process each sheet | |
for sheet in sheet_names: | |
df = pd.read_excel(excel_path, sheet_name=sheet) | |
total_rows += len(df) | |
# Convert dataframe to text for vectorization | |
sheet_text = f"Sheet: {sheet}\n" | |
sheet_text += df.to_string(index=False) | |
all_texts.append(sheet_text) | |
# Generate HTML preview of first sheet | |
first_df = pd.read_excel(excel_path, sheet_name=0) | |
preview_rows = min(10, len(first_df)) | |
data_preview = first_df.head(preview_rows).to_html(classes="excel-preview-table", index=False) | |
# Process for vectorstore | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
chunks = text_splitter.create_documents(all_texts) | |
vectorstore = FAISS.from_documents(chunks, embeddings) | |
index_path = os.path.join(FAISS_INDEX_DIR, session_id) | |
vectorstore.save_local(index_path) | |
user_vectorstores[session_id] = vectorstore | |
os.unlink(excel_path) | |
excel_state = {"data_preview": data_preview, "total_sheets": len(sheet_names), "total_rows": total_rows} | |
return session_id, f"β Successfully processed {len(chunks)} text chunks from Excel file", excel_state | |
except Exception as e: | |
if "excel_path" in locals() and os.path.exists(excel_path): | |
os.unlink(excel_path) | |
return None, f"Error processing Excel file: {str(e)}", {"data_preview": "", "total_sheets": 0, "total_rows": 0} | |
# Function to analyze image using SmolDocling | |
def analyze_image(image_file): | |
""" | |
Basic image analysis function that doesn't rely on external models | |
""" | |
if image_file is None: | |
return "No image uploaded. Please upload an image to analyze." | |
try: | |
image = Image.open(image_file) | |
width, height = image.size | |
format = image.format | |
mode = image.mode | |
analysis = f"""## Technical Document Analysis | |
**Image Properties:** | |
- Dimensions: {width}x{height} pixels | |
- Format: {format} | |
- Color Mode: {mode} | |
**Technical Analysis:** | |
1. Document Quality: | |
- Resolution: {'High' if width > 2000 or height > 2000 else 'Medium' if width > 1000 or height > 1000 else 'Low'} | |
- Color Depth: {mode} | |
2. Recommendations: | |
- For text extraction, consider using PDF format | |
- For technical diagrams, ensure high resolution | |
- Consider OCR for text content | |
**Note:** For detailed technical analysis, please convert to PDF format | |
""" | |
return analysis | |
except Exception as e: | |
return f"Error analyzing image: {str(e)}\n\nPlease try using PDF format instead." | |
# Function to handle different file types | |
def process_file(file_data, file_type): | |
if file_data is None: | |
return None, "No file uploaded", None | |
if file_type == "pdf": | |
return process_pdf(file_data) | |
elif file_type == "excel": | |
return process_excel(file_data) | |
elif file_type == "image": | |
# For image files, we'll just use them directly for analysis | |
# But we'll return a session ID to maintain consistency | |
session_id = str(uuid.uuid4()) | |
return session_id, "β Image file ready for analysis", None | |
else: | |
return None, "Unsupported file type", None | |
# Function for speech-to-text conversion | |
def speech_to_text(): | |
try: | |
r = sr.Recognizer() | |
with sr.Microphone() as source: | |
r.adjust_for_ambient_noise(source) | |
audio = r.listen(source) | |
text = r.recognize_google(audio) | |
return text | |
except sr.UnknownValueError: | |
return "Could not understand audio. Please try again." | |
except sr.RequestError as e: | |
return f"Error with speech recognition service: {e}" | |
except Exception as e: | |
return f"Error converting speech to text: {str(e)}" | |
# Function for text-to-speech conversion | |
def text_to_speech(text, history): | |
if not text or not history: | |
return None | |
try: | |
# Get the last bot response | |
last_response = history[-1][1] | |
# Convert text to speech | |
tts = pyttsx3.init() | |
tts.setProperty('rate', 150) | |
tts.setProperty('volume', 0.9) | |
tts.save_to_file(last_response, "temp_output.mp3") | |
tts.runAndWait() | |
return "temp_output.mp3" | |
except Exception as e: | |
print(f"Error in text-to-speech: {e}") | |
return None | |
# Function to generate chatbot responses with Tech theme | |
def generate_response(message, session_id, model_name, history, web_search_enabled=True): | |
if not message: | |
return history | |
try: | |
context = "" | |
if session_id and session_id in user_vectorstores: | |
vectorstore = user_vectorstores[session_id] | |
docs = vectorstore.similarity_search(message, k=3) | |
if docs: | |
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs) | |
# Check if it's a GitHub repo search and web search is enabled | |
if web_search_enabled and re.match(r'^/github\s+.+', message, re.IGNORECASE): | |
query = re.sub(r'^/github\s+', '', message, flags=re.IGNORECASE) | |
repo_results = search_github_repos(query) | |
if repo_results: | |
response = "**GitHub Repository Search Results:**\n\n" | |
for repo in repo_results[:3]: # Limit to top 3 results | |
response += f"**[{repo['name']}]({repo['html_url']})**\n" | |
if repo['description']: | |
response += f"{repo['description']}\n" | |
response += f"β {repo['stargazers_count']} | π΄ {repo['forks_count']} | Language: {repo['language'] or 'Not specified'}\n" | |
response += f"Updated: {repo['updated_at'][:10]}\n\n" | |
history.append((message, response)) | |
return history | |
else: | |
history.append((message, "No GitHub repositories found for your query.")) | |
return history | |
# Check if it's a Stack Overflow search and web search is enabled | |
if web_search_enabled and re.match(r'^/stack\s+.+', message, re.IGNORECASE): | |
query = re.sub(r'^/stack\s+', '', message, flags=re.IGNORECASE) | |
qa_results = search_stackoverflow(query) | |
if qa_results: | |
response = "**Stack Overflow Search Results:**\n\n" | |
for qa in qa_results[:3]: # Limit to top 3 results | |
response += f"**[{qa['title']}]({qa['link']})**\n" | |
response += f"Score: {qa['score']} | Answers: {qa['answer_count']}\n" | |
if 'tags' in qa and qa['tags']: | |
response += f"Tags: {', '.join(qa['tags'][:5])}\n" | |
response += f"Asked: {qa['creation_date']}\n\n" | |
history.append((message, response)) | |
return history | |
else: | |
history.append((message, "No Stack Overflow questions found for your query.")) | |
return history | |
# Check if it's a code explanation request | |
code_match = re.search(r'/explain\s+```(?:.+?)?\n(.+?)```', message, re.DOTALL) | |
if code_match: | |
code = code_match.group(1).strip() | |
explanation = explain_code(code) | |
history.append((message, explanation)) | |
return history | |
system_prompt = "You are a technical assistant specializing in software development, programming, and IT topics." | |
system_prompt += " Format code snippets with proper markdown code blocks with language specified." | |
system_prompt += " For technical explanations, be precise and include examples where helpful." | |
if context: | |
system_prompt += " Use the following context to answer the question if relevant: " + context | |
completion = client.chat.completions.create( | |
model=model_name, | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": message} | |
], | |
temperature=0.7, | |
max_tokens=1024 | |
) | |
response = completion.choices[0].message.content | |
history.append((message, response)) | |
return history | |
except Exception as e: | |
history.append((message, f"Error generating response: {str(e)}")) | |
return history | |
# Functions to update PDF viewer | |
def update_pdf_viewer(pdf_state): | |
if not pdf_state["total_pages"]: | |
return 0, None, "No PDF uploaded yet" | |
try: | |
img_data = base64.b64decode(pdf_state["page_images"][0]) | |
img = Image.open(io.BytesIO(img_data)) | |
return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}" | |
except Exception as e: | |
print(f"Error decoding image: {e}") | |
return 0, None, "Error displaying PDF" | |
def update_image(page_num, pdf_state): | |
if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]: | |
return None | |
try: | |
img_data = base64.b64decode(pdf_state["page_images"][page_num - 1]) | |
img = Image.open(io.BytesIO(img_data)) | |
return img | |
except Exception as e: | |
print(f"Error decoding image: {e}") | |
return None | |
# GitHub API integration | |
def search_github_repos(query, sort="stars", order="desc", per_page=10): | |
"""Search for GitHub repositories""" | |
try: | |
github_token = os.getenv("GITHUB_TOKEN", "") | |
headers = {} | |
if github_token: | |
headers["Authorization"] = f"token {github_token}" | |
params = { | |
"q": query, | |
"sort": sort, | |
"order": order, | |
"per_page": per_page | |
} | |
response = requests.get( | |
"https://api.github.com/search/repositories", | |
headers=headers, | |
params=params | |
) | |
if response.status_code != 200: | |
print(f"GitHub API Error: {response.status_code} - {response.text}") | |
return [] | |
data = response.json() | |
return data.get("items", []) | |
except Exception as e: | |
print(f"Error in GitHub search: {e}") | |
return [] | |
# Stack Overflow API integration | |
def search_stackoverflow(query, sort="votes", site="stackoverflow", pagesize=10): | |
"""Search for questions on Stack Overflow""" | |
try: | |
params = { | |
"order": "desc", | |
"sort": sort, | |
"site": site, | |
"pagesize": pagesize, | |
"intitle": query | |
} | |
response = requests.get( | |
"https://api.stackexchange.com/2.3/search/advanced", | |
params=params | |
) | |
if response.status_code != 200: | |
print(f"Stack Exchange API Error: {response.status_code} - {response.text}") | |
return [] | |
data = response.json() | |
# Process results to convert Unix timestamps to readable dates | |
for item in data.get("items", []): | |
if "creation_date" in item: | |
item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d") | |
return data.get("items", []) | |
except Exception as e: | |
print(f"Error in Stack Overflow search: {e}") | |
return [] | |
def get_stackoverflow_answers(question_id, site="stackoverflow"): | |
"""Get answers for a specific question on Stack Overflow""" | |
try: | |
params = { | |
"order": "desc", | |
"sort": "votes", | |
"site": site, | |
"filter": "withbody" # Include the answer body in the response | |
} | |
response = requests.get( | |
f"https://api.stackexchange.com/2.3/questions/{question_id}/answers", | |
params=params | |
) | |
if response.status_code != 200: | |
print(f"Stack Exchange API Error: {response.status_code} - {response.text}") | |
return [] | |
data = response.json() | |
# Process results | |
for item in data.get("items", []): | |
if "creation_date" in item: | |
item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d") | |
return data.get("items", []) | |
except Exception as e: | |
print(f"Error getting Stack Overflow answers: {e}") | |
return [] | |
def explain_code(code): | |
"""Explain code using LLM""" | |
try: | |
system_prompt = "You are an expert programmer and code reviewer. Your task is to explain the provided code in a clear, concise manner. Include:" | |
system_prompt += "\n1. What the code does (high-level overview)" | |
system_prompt += "\n2. Key functions/components and their purposes" | |
system_prompt += "\n3. Potential issues or optimization opportunities" | |
system_prompt += "\n4. Any best practices that are followed or violated" | |
completion = client.chat.completions.create( | |
model="llama3-70b-8192", # Using more capable model for code explanation | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": f"Explain this code:\n```\n{code}\n```"} | |
], | |
temperature=0.3, | |
max_tokens=1024 | |
) | |
explanation = completion.choices[0].message.content | |
return f"**Code Explanation:**\n\n{explanation}" | |
except Exception as e: | |
return f"Error explaining code: {str(e)}" | |
def perform_repo_search(query, language, sort_by, min_stars): | |
"""Perform GitHub repository search with UI parameters""" | |
try: | |
if not query: | |
return "Please enter a search query" | |
# Build the search query with filters | |
search_query = query | |
if language and language != "any": | |
search_query += f" language:{language}" | |
if min_stars and min_stars != "0": | |
search_query += f" stars:>={min_stars}" | |
# Map sort_by to GitHub API parameters | |
sort_param = "stars" | |
if sort_by == "updated": | |
sort_param = "updated" | |
elif sort_by == "forks": | |
sort_param = "forks" | |
results = search_github_repos(search_query, sort=sort_param) | |
if not results: | |
return "No repositories found. Try different search terms." | |
# Format results as markdown | |
markdown = "## GitHub Repository Search Results\n\n" | |
for i, repo in enumerate(results, 1): | |
markdown += f"### {i}. [{repo['full_name']}]({repo['html_url']})\n\n" | |
if repo['description']: | |
markdown += f"{repo['description']}\n\n" | |
markdown += f"**Language:** {repo['language'] or 'Not specified'}\n" | |
markdown += f"**Stars:** {repo['stargazers_count']} | **Forks:** {repo['forks_count']} | **Watchers:** {repo['watchers_count']}\n" | |
markdown += f"**Created:** {repo['created_at'][:10]} | **Updated:** {repo['updated_at'][:10]}\n\n" | |
if repo.get('topics'): | |
markdown += f"**Topics:** {', '.join(repo['topics'])}\n\n" | |
if repo.get('license') and repo['license'].get('name'): | |
markdown += f"**License:** {repo['license']['name']}\n\n" | |
markdown += f"[View Repository]({repo['html_url']}) | [Clone URL]({repo['clone_url']})\n\n" | |
markdown += "---\n\n" | |
return markdown | |
except Exception as e: | |
return f"Error searching for repositories: {str(e)}" | |
def perform_stack_search(query, tag, sort_by): | |
"""Perform Stack Overflow search with UI parameters""" | |
try: | |
if not query: | |
return "Please enter a search query" | |
# Add tag to query if specified | |
if tag and tag != "any": | |
query_with_tag = f"{query} [tag:{tag}]" | |
else: | |
query_with_tag = query | |
# Map sort_by to Stack Exchange API parameters | |
sort_param = "votes" | |
if sort_by == "newest": | |
sort_param = "creation" | |
elif sort_by == "activity": | |
sort_param = "activity" | |
results = search_stackoverflow(query_with_tag, sort=sort_param) | |
if not results: | |
return "No questions found. Try different search terms." | |
# Format results as markdown | |
markdown = "## Stack Overflow Search Results\n\n" | |
for i, question in enumerate(results, 1): | |
markdown += f"### {i}. [{question['title']}]({question['link']})\n\n" | |
# Score and answer stats | |
markdown += f"**Score:** {question['score']} | **Answers:** {question['answer_count']}" | |
if question.get('is_answered'): | |
markdown += " β (Accepted answer available)" | |
markdown += "\n\n" | |
# Tags | |
if question.get('tags'): | |
markdown += "**Tags:** " | |
for tag in question['tags']: | |
markdown += f"`{tag}` " | |
markdown += "\n\n" | |
# Asked info | |
markdown += f"**Asked:** {question['creation_date']} | **Views:** {question.get('view_count', 'N/A')}\n\n" | |
markdown += f"[View Question]({question['link']})\n\n" | |
markdown += "---\n\n" | |
return markdown | |
except Exception as e: | |
return f"Error searching Stack Overflow: {str(e)}" | |
def detect_language(file_extension): | |
"""Map file extensions to programming languages""" | |
language_map = { | |
".py": "Python", | |
".js": "JavaScript", | |
".java": "Java", | |
".cpp": "C++", | |
".c": "C", | |
".cs": "C#", | |
".php": "PHP", | |
".rb": "Ruby", | |
".go": "Go", | |
".rs": "Rust", | |
".swift": "Swift", | |
".kt": "Kotlin", | |
".ts": "TypeScript", | |
".html": "HTML", | |
".css": "CSS", | |
".sql": "SQL", | |
".r": "R", | |
".m": "Objective-C/MATLAB", | |
".h": "C/C++ Header", | |
".hpp": "C++ Header", | |
".jsx": "React JSX", | |
".tsx": "React TSX", | |
".vue": "Vue.js", | |
".scala": "Scala", | |
".pl": "Perl", | |
".sh": "Shell Script", | |
".bash": "Bash Script", | |
".ps1": "PowerShell", | |
".yaml": "YAML", | |
".yml": "YAML", | |
".json": "JSON", | |
".xml": "XML", | |
".toml": "TOML", | |
".ini": "INI" | |
} | |
return language_map.get(file_extension.lower(), "Unknown") | |
def analyze_code(code_file): | |
"""Analyze code files and provide insights""" | |
if code_file is None: | |
return "No file uploaded. Please upload a code file to analyze." | |
try: | |
# Get file extension | |
file_extension = os.path.splitext(code_file.name)[1] | |
language = detect_language(file_extension) | |
# Read the file content | |
content = code_file.read().decode('utf-8', errors='ignore') | |
# Basic code metrics | |
total_lines = len(content.splitlines()) | |
blank_lines = len([line for line in content.splitlines() if not line.strip()]) | |
code_lines = total_lines - blank_lines | |
# Calculate complexity metrics | |
complexity_metrics = calculate_complexity(content, language) | |
# Generate analysis using LLM | |
analysis_prompt = f"""Analyze this {language} code and provide insights about: | |
1. Code structure and organization | |
2. Potential improvements or best practices | |
3. Security considerations | |
4. Performance implications | |
5. Maintainability factors | |
Code metrics: | |
- Total lines: {total_lines} | |
- Code lines: {code_lines} | |
- Blank lines: {blank_lines} | |
{complexity_metrics} | |
First 1000 characters of code: | |
{content[:1000]}... | |
""" | |
completion = client.chat.completions.create( | |
model="llama3-70b-8192", | |
messages=[ | |
{"role": "system", "content": "You are an expert code reviewer and technical architect."}, | |
{"role": "user", "content": analysis_prompt} | |
], | |
temperature=0.3, | |
max_tokens=1500 | |
) | |
# Format the analysis | |
analysis = f"""## Code Analysis Report | |
**File Type:** {language} | |
### Code Metrics | |
- Total Lines: {total_lines} | |
- Code Lines: {code_lines} | |
- Blank Lines: {blank_lines} | |
### Complexity Analysis | |
{complexity_metrics} | |
### Expert Analysis | |
{completion.choices[0].message.content} | |
### Recommendations | |
1. Consider using a linter specific to {language} | |
2. Review the security considerations mentioned above | |
3. Consider automated testing to validate the code | |
4. Document any complex algorithms or business logic | |
""" | |
return analysis | |
except Exception as e: | |
return f"Error analyzing code: {str(e)}\n\nPlease ensure the file is properly formatted and encoded." | |
def calculate_complexity(content, language): | |
"""Calculate various complexity metrics based on the language""" | |
try: | |
# Count function/method definitions | |
function_patterns = { | |
"Python": r"def\s+\w+\s*\(", | |
"JavaScript": r"function\s+\w+\s*\(|const\s+\w+\s*=\s*\([^)]*\)\s*=>", | |
"Java": r"(public|private|protected)?\s*\w+\s+\w+\s*\([^)]*\)\s*\{", | |
"C++": r"\w+\s+\w+\s*\([^)]*\)\s*\{", | |
} | |
pattern = function_patterns.get(language, r"\w+\s+\w+\s*\([^)]*\)") | |
function_count = len(re.findall(pattern, content)) | |
# Calculate cyclomatic complexity (rough estimate) | |
decision_patterns = [ | |
r"\bif\b", | |
r"\bwhile\b", | |
r"\bfor\b", | |
r"\bcase\b", | |
r"\bcatch\b", | |
r"\b&&\b", | |
r"\b\|\|\b" | |
] | |
decision_points = sum(len(re.findall(p, content)) for p in decision_patterns) | |
# Estimate maintainability | |
avg_line_length = sum(len(line) for line in content.splitlines()) / len(content.splitlines()) if content.splitlines() else 0 | |
return f"""**Complexity Metrics:** | |
- Estimated Function Count: {function_count} | |
- Decision Points: {decision_points} | |
- Average Line Length: {avg_line_length:.2f} characters | |
- Cyclomatic Complexity Estimate: {decision_points + 1} | |
""" | |
except Exception as e: | |
return f"Error calculating complexity: {str(e)}" | |
def update_status_with_animation(status): | |
return f""" | |
<div class="status-message"> | |
<div class="loading-container"> | |
<div class="loading-bar"></div> | |
</div> | |
> {status} | |
</div> | |
""" | |
# Update the analysis results display | |
def format_analysis_results(analysis): | |
return f""" | |
<div class="analysis-container"> | |
<div class="analysis-header">> ANALYSIS COMPLETE</div> | |
{analysis} | |
<div class="loading-container"> | |
<div class="loading-bar"></div> | |
</div> | |
</div> | |
""" | |
def format_code_metrics(metrics): | |
return f""" | |
<div class="metric-card"> | |
<div style="color: var(--neon-yellow);">SYSTEM METRICS</div> | |
<div style="margin-top: 10px;"> | |
{metrics} | |
</div> | |
</div> | |
""" | |
# Add cyberpunk UI sound effects | |
def play_interface_sound(sound_type): | |
sounds = { | |
"hover": "hover.mp3", | |
"click": "click.mp3", | |
"success": "success.mp3", | |
"error": "error.mp3" | |
} | |
return gr.Audio(value=sounds.get(sound_type), autoplay=True, visible=False) | |
# Create the Gradio interface with advanced cyberpunk styling | |
def create_cyberpunk_interface(): | |
css = compile_scss() | |
with gr.Blocks(css=css, head=NEURAL_JS) as demo: | |
current_session_id = gr.State(None) | |
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0}) | |
excel_state = gr.State({"data_preview": "", "total_sheets": 0, "total_rows": 0}) | |
file_type = gr.State("none") | |
audio_status = gr.State("Ready") | |
gr.HTML(""" | |
<div class="neural-interface"> | |
<div class="neural-interface__header">TECH-VISION_v3.0</div> | |
<div class="neural-status"> | |
<div class="neural-status__indicator"></div> | |
<div class="neural-status__text">SYSTEM ONLINE</div> | |
</div> | |
</div> | |
""") | |
with gr.Row(elem_classes="neural-grid"): | |
with gr.Column(scale=1, min_width=300): | |
with gr.Tabs(): | |
with gr.TabItem("[SYS:SCAN] Code Analysis"): | |
gr.HTML(""" | |
<div class="upload-container"> | |
<div style="color: var(--neon-blue); margin-bottom: 10px;"> | |
> INITIATE CODE SCAN | |
</div> | |
""") | |
code_file = gr.File( | |
label="UPLOAD SOURCE CODE", | |
file_types=[".py", ".js", ".java", ".cpp", ".c", ".cs", ".php", ".rb", | |
".go", ".rs", ".swift", ".kt", ".ts", ".html", ".css", | |
".sql", ".r", ".m", ".h", ".hpp", ".jsx", ".tsx", | |
".vue", ".scala", ".pl", ".sh", ".bash", ".ps1", | |
".yaml", ".yml", ".json", ".xml", ".toml", ".ini"], | |
type="binary" | |
) | |
gr.HTML("</div>") | |
code_analyze_btn = gr.Button("INITIATE ANALYSIS", elem_classes="primary-btn") | |
with gr.TabItem("PDF"): | |
pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary") | |
pdf_upload_button = gr.Button("Process PDF", variant="primary") | |
with gr.TabItem("Excel"): | |
excel_file = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xls"], type="binary") | |
excel_upload_button = gr.Button("Process Excel", variant="primary") | |
with gr.TabItem("Image"): | |
image_input = gr.File( | |
label="Upload Image", | |
file_types=["image"], | |
type="filepath" | |
) | |
analyze_btn = gr.Button("Analyze Image") | |
file_status = gr.Markdown("No file uploaded yet") | |
# Model selector | |
model_dropdown = gr.Dropdown( | |
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"], | |
value="llama3-70b-8192", | |
label="Select Groq Model" | |
) | |
with gr.Column(scale=2, min_width=600): | |
with gr.Tabs(): | |
with gr.TabItem("PDF Viewer"): | |
with gr.Column(elem_classes="pdf-viewer-container"): | |
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1) | |
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image") | |
pdf_stats = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box") | |
with gr.TabItem("Excel Viewer"): | |
excel_preview = gr.HTML(label="Excel Preview", elem_classes="file-preview") | |
excel_stats = gr.Markdown("No Excel file uploaded yet", elem_classes="stats-box") | |
with gr.TabItem("Image Analysis"): | |
image_preview = gr.Image(label="Image Preview", type="pil") | |
image_analysis_results = gr.Markdown("Upload an image and click 'Analyze Image' to see analysis results") | |
with gr.TabItem("Code Analysis Results"): | |
analysis_results = gr.Markdown("Upload a code file and click 'Analyze Code' to see analysis results") | |
with gr.Row(): | |
copy_btn = gr.Button("π Copy Analysis") | |
export_btn = gr.Button("π₯ Export Report") | |
# Audio visualization elements | |
with gr.Row(elem_classes="container"): | |
with gr.Column(): | |
audio_vis = gr.HTML(""" | |
<div class="audio-visualization"> | |
<div class="audio-bar" style="height: 5px;"></div> | |
<div class="audio-bar" style="height: 12px;"></div> | |
<div class="audio-bar" style="height: 18px;"></div> | |
<div class="audio-bar" style="height: 15px;"></div> | |
<div class="audio-bar" style="height: 10px;"></div> | |
<div class="audio-bar" style="height: 20px;"></div> | |
<div class="audio-bar" style="height: 14px;"></div> | |
<div class="audio-bar" style="height: 8px;"></div> | |
</div> | |
""", visible=False) | |
audio_status_display = gr.Markdown("", elem_classes="audio-status") | |
# Chat interface | |
with gr.Row(elem_classes="container"): | |
with gr.Column(scale=2, min_width=600): | |
chatbot = gr.Chatbot( | |
height=400, | |
show_copy_button=True, | |
elem_classes="chat-container", | |
type="messages" # Use the new messages format | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
show_label=False, | |
placeholder="Ask about your document or click the microphone to speak...", | |
scale=5 | |
) | |
voice_btn = gr.Button("π€", elem_classes="voice-btn") | |
send_btn = gr.Button("Send", scale=1) | |
with gr.Row(elem_classes="audio-controls"): | |
clear_btn = gr.Button("Clear Conversation") | |
speak_btn = gr.Button("π Speak Response", elem_classes="speak-btn") | |
audio_player = gr.Audio(label="Response Audio", type="filepath", visible=False) | |
# Event Handlers for PDF processing | |
pdf_upload_button.click( | |
lambda x: ("pdf", x), | |
inputs=[pdf_file], | |
outputs=[file_type, file_status] | |
).then( | |
process_pdf, | |
inputs=[pdf_file], | |
outputs=[current_session_id, file_status, pdf_state] | |
).then( | |
update_pdf_viewer, | |
inputs=[pdf_state], | |
outputs=[page_slider, pdf_image, pdf_stats] | |
) | |
# Event Handlers for Excel processing | |
def update_excel_preview(state): | |
if not state: | |
return "", "No Excel file uploaded yet" | |
preview = state.get("data_preview", "") | |
sheets = state.get("total_sheets", 0) | |
rows = state.get("total_rows", 0) | |
stats = f"**Excel Statistics:**\nSheets: {sheets}\nTotal Rows: {rows}" | |
return preview, stats | |
excel_upload_button.click( | |
lambda x: ("excel", x), | |
inputs=[excel_file], | |
outputs=[file_type, file_status] | |
).then( | |
process_excel, | |
inputs=[excel_file], | |
outputs=[current_session_id, file_status, excel_state] | |
).then( | |
update_excel_preview, | |
inputs=[excel_state], | |
outputs=[excel_preview, excel_stats] | |
) | |
# Event Handlers for Image Analysis | |
analyze_btn.click( | |
lambda x: ("image", x), | |
inputs=[image_input], | |
outputs=[file_type, file_status] | |
).then( | |
analyze_image, | |
inputs=[image_input], | |
outputs=[image_analysis_results] | |
).then( | |
lambda x: Image.open(x) if x else None, | |
inputs=[image_input], | |
outputs=[image_preview] | |
) | |
# Event Handlers for Code Analysis | |
code_analyze_btn.click( | |
update_status_with_animation, | |
inputs=[], | |
outputs=[file_status] | |
).then( | |
analyze_code, | |
inputs=[code_file], | |
outputs=[analysis_results] | |
).then( | |
format_analysis_results, | |
inputs=[analysis_results], | |
outputs=[analysis_results] | |
) | |
# Chat message handling | |
msg.submit( | |
generate_response, | |
inputs=[msg, current_session_id, model_dropdown, chatbot], | |
outputs=[chatbot] | |
).then(lambda: "", None, [msg]) | |
send_btn.click( | |
generate_response, | |
inputs=[msg, current_session_id, model_dropdown, chatbot], | |
outputs=[chatbot] | |
).then(lambda: "", None, [msg]) | |
# Improved speech-to-text with visual feedback | |
voice_btn.click( | |
speech_to_text, | |
inputs=[audio_status], | |
outputs=[audio_status_display, audio_vis, msg] | |
) | |
# Improved text-to-speech with visual feedback | |
speak_btn.click( | |
text_to_speech, | |
inputs=[audio_status, chatbot], | |
outputs=[audio_status_display, audio_vis, audio_player] | |
).then( | |
lambda x: gr.update(visible=True) if x else gr.update(visible=False), | |
inputs=[audio_player], | |
outputs=[audio_player] | |
) | |
# Page navigation for PDF | |
page_slider.change( | |
update_image, | |
inputs=[page_slider, pdf_state], | |
outputs=[pdf_image] | |
) | |
# Clear conversation and reset UI | |
clear_btn.click( | |
lambda: ( | |
[], None, "No file uploaded yet", | |
{"page_images": [], "total_pages": 0, "total_words": 0}, | |
{"data_preview": "", "total_sheets": 0, "total_rows": 0}, | |
"none", 0, None, "No PDF uploaded yet", "", | |
"No Excel file uploaded yet", None, | |
"Upload an image and click 'Analyze Image' to see results", None, | |
gr.update(visible=False), "Ready" | |
), | |
None, | |
[chatbot, current_session_id, file_status, pdf_state, excel_state, | |
file_type, page_slider, pdf_image, pdf_stats, excel_preview, | |
excel_stats, image_preview, image_analysis_results, audio_player, | |
audio_vis, audio_status_display] | |
) | |
# Add footer with creator attribution | |
gr.HTML(""" | |
<div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;"> | |
Created by Calvin Allen Crawford | |
</div> | |
""") | |
return demo | |
# Launch the app | |
if __name__ == "__main__": | |
demo = create_cyberpunk_interface() | |
demo.launch() |