Tech-Vision / app.py
CosmickVisions's picture
Update app.py
31d5723 verified
raw
history blame
37.6 kB
import os
import tempfile
import uuid
import base64
import io
import json
import re
from datetime import datetime, timedelta
# Third-party imports
import gradio as gr
import groq
import numpy as np
import pandas as pd
import openpyxl
import requests
import fitz # PyMuPDF
from PIL import Image
from dotenv import load_dotenv
from transformers import AutoProcessor, AutoModelForVision2Seq
import torch
# LangChain imports
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Load environment variables
load_dotenv()
client = groq.Client(api_key=os.getenv("GROQ_TECH_API_KEY"))
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Directory to store FAISS indexes
FAISS_INDEX_DIR = "faiss_indexes_tech"
if not os.path.exists(FAISS_INDEX_DIR):
os.makedirs(FAISS_INDEX_DIR)
# Dictionary to store user-specific vectorstores
user_vectorstores = {}
# Load SmolDocling model for image analysis
def load_docling_model():
try:
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForVision2Seq.from_pretrained("ds4sd/SmolDocling-256M-preview")
return processor, model
except Exception as e:
print(f"Error loading SmolDocling model: {e}")
return None, None
# Initialize SmolDocling model
docling_processor, docling_model = load_docling_model()
# Custom CSS for Tech theme
custom_css = """
:root {
--primary-color: #4285F4; /* Google Blue */
--secondary-color: #34A853; /* Google Green */
--light-background: #F8F9FA;
--dark-text: #202124;
--white: #FFFFFF;
--border-color: #DADCE0;
--code-bg: #F1F3F4;
--code-text: #37474F;
--error-color: #EA4335; /* Google Red */
--warning-color: #FBBC04; /* Google Yellow */
}
body { background-color: var(--light-background); font-family: 'Google Sans', 'Roboto', sans-serif; }
.container { max-width: 1200px !important; margin: 0 auto !important; padding: 10px; }
.header { background-color: var(--white); border-bottom: 1px solid var(--border-color); padding: 15px 0; margin-bottom: 20px; border-radius: 12px 12px 0 0; box-shadow: 0 1px 2px rgba(0,0,0,0.05); }
.header-title { color: var(--primary-color); font-size: 1.8rem; font-weight: 700; text-align: center; }
.header-subtitle { color: var(--dark-text); font-size: 1rem; text-align: center; margin-top: 5px; }
.chat-container { border-radius: 8px !important; box-shadow: 0 1px 3px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; min-height: 500px; }
.message-user { background-color: var(--primary-color) !important; color: var(--white) !important; border-radius: 18px 18px 4px 18px !important; padding: 12px 16px !important; margin-left: auto !important; max-width: 80% !important; }
.message-bot { background-color: #F1F3F4 !important; color: var(--dark-text) !important; border-radius: 18px 18px 18px 4px !important; padding: 12px 16px !important; margin-right: auto !important; max-width: 80% !important; }
.input-area { background-color: var(--white) !important; border-top: 1px solid var(--border-color) !important; padding: 12px !important; border-radius: 0 0 12px 12px !important; }
.input-box { border: 1px solid var(--border-color) !important; border-radius: 24px !important; padding: 12px 16px !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; }
.send-btn { background-color: var(--primary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 10px 20px !important; font-weight: 500 !important; }
.clear-btn { background-color: #F1F3F4 !important; border: 1px solid var(--border-color) !important; border-radius: 24px !important; color: var(--dark-text) !important; padding: 8px 16px !important; font-weight: 500 !important; }
.pdf-viewer-container { border-radius: 8px !important; box-shadow: 0 1px 3px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; padding: 20px; }
.pdf-viewer-image { max-width: 100%; height: auto; border: 1px solid var(--border-color); border-radius: 8px; box-shadow: 0 1px 2px rgba(0,0,0,0.05); }
.stats-box { background-color: #E8F0FE; padding: 10px; border-radius: 8px; margin-top: 10px; }
.tool-container { background-color: var(--white); border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); padding: 15px; margin-bottom: 20px; border: 1px solid var(--border-color); }
.code-block { background-color: var(--code-bg); color: var(--code-text); padding: 12px; border-radius: 8px; font-family: 'Roboto Mono', monospace; overflow-x: auto; margin: 10px 0; border-left: 3px solid var(--primary-color); }
.repo-card { border: 1px solid var(--border-color); padding: 15px; margin: 10px 0; border-radius: 8px; background-color: var(--white); }
.repo-name { color: var(--primary-color); font-weight: bold; font-size: 1.1rem; margin-bottom: 5px; }
.repo-description { color: var(--dark-text); font-size: 0.9rem; margin-bottom: 10px; }
.repo-stats { display: flex; gap: 15px; color: #5F6368; font-size: 0.85rem; }
.repo-stat { display: flex; align-items: center; gap: 5px; }
.qa-card { border-left: 3px solid var(--secondary-color); padding: 10px 15px; margin: 15px 0; background-color: #F8F9FA; border-radius: 0 8px 8px 0; }
.qa-title { font-weight: bold; color: var(--dark-text); margin-bottom: 5px; }
.qa-body { color: var(--dark-text); font-size: 0.95rem; margin-bottom: 10px; }
.qa-meta { display: flex; justify-content: space-between; color: #5F6368; font-size: 0.85rem; }
.tag { background-color: #E8F0FE; color: var(--primary-color); padding: 4px 8px; border-radius: 4px; font-size: 0.8rem; margin-right: 5px; display: inline-block; }
.toggle-container { display: flex; align-items: center; margin-bottom: 15px; }
.toggle-label { margin-right: 10px; font-weight: 500; }
.search-toggle { margin-left: 5px; }
.voice-btn { background-color: var(--primary-color) !important; border-radius: 50% !important; width: 44px !important; height: 44px !important; display: flex !important; align-items: center !important; justify-content: center !important; color: var(--white) !important; box-shadow: 0 2px 5px rgba(0,0,0,0.2) !important; }
.speak-btn { background-color: var(--secondary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 8px 16px !important; font-weight: 500 !important; margin-left: 10px !important; }
.audio-controls { display: flex; align-items: center; margin-top: 10px; }
/* Audio Visualization Elements */
.audio-visualization {
display: flex;
align-items: center;
justify-content: center;
gap: 4px;
height: 40px;
padding: 10px;
background-color: rgba(0,0,0,0.05);
border-radius: 12px;
margin: 10px 0;
}
.audio-bar {
width: 3px;
background-color: var(--accent-color);
border-radius: 2px;
height: 5px;
transition: height 0.1s ease;
}
.audio-status {
font-size: 0.85rem;
color: var(--secondary-color);
text-align: center;
margin-top: 5px;
font-style: italic;
}
.recording-indicator {
width: 12px;
height: 12px;
border-radius: 50%;
background-color: #ff4b4b;
margin-right: 8px;
animation: blink 1s infinite;
}
.playing-indicator {
width: 12px;
height: 12px;
border-radius: 50%;
background-color: #4bff4b;
margin-right: 8px;
animation: pulse 1s infinite;
}
@keyframes blink {
0% { opacity: 1; }
50% { opacity: 0.4; }
100% { opacity: 1; }
}
@keyframes pulse {
0% { transform: scale(1); }
50% { transform: scale(1.2); }
100% { transform: scale(1); }
}
.file-upload-enhancement .file-preview {
max-height: 200px;
overflow: auto;
border: 1px solid var(--border-color);
border-radius: 8px;
padding: 10px;
margin-top: 10px;
background-color: rgba(0,0,0,0.02);
}
.excel-preview-table {
width: 100%;
border-collapse: collapse;
font-size: 0.85rem;
}
.excel-preview-table th, .excel-preview-table td {
border: 1px solid #ddd;
padding: 4px 8px;
text-align: left;
}
.excel-preview-table th {
background-color: var(--secondary-color);
color: white;
}
.excel-preview-table tr:nth-child(even) {
background-color: rgba(0,0,0,0.03);
}
"""
# Function to process PDF files
def process_pdf(pdf_file):
if pdf_file is None:
return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0}
try:
session_id = str(uuid.uuid4())
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
temp_file.write(pdf_file)
pdf_path = temp_file.name
doc = fitz.open(pdf_path)
texts = [page.get_text() for page in doc]
page_images = []
for page in doc:
pix = page.get_pixmap()
img_bytes = pix.tobytes("png")
img_base64 = base64.b64encode(img_bytes).decode("utf-8")
page_images.append(img_base64)
total_pages = len(doc)
total_words = sum(len(text.split()) for text in texts)
doc.close()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.create_documents(texts)
vectorstore = FAISS.from_documents(chunks, embeddings)
index_path = os.path.join(FAISS_INDEX_DIR, session_id)
vectorstore.save_local(index_path)
user_vectorstores[session_id] = vectorstore
os.unlink(pdf_path)
pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words}
return session_id, f"βœ… Successfully processed {len(chunks)} text chunks from your PDF", pdf_state
except Exception as e:
if "pdf_path" in locals() and os.path.exists(pdf_path):
os.unlink(pdf_path)
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}
# New function to process Excel files
def process_excel(excel_file):
if excel_file is None:
return None, "No file uploaded", {"data_preview": "", "total_sheets": 0, "total_rows": 0}
try:
session_id = str(uuid.uuid4())
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as temp_file:
temp_file.write(excel_file)
excel_path = temp_file.name
# Read Excel file with pandas
excel_data = pd.ExcelFile(excel_path)
sheet_names = excel_data.sheet_names
all_texts = []
total_rows = 0
# Process each sheet
for sheet in sheet_names:
df = pd.read_excel(excel_path, sheet_name=sheet)
total_rows += len(df)
# Convert dataframe to text for vectorization
sheet_text = f"Sheet: {sheet}\n"
sheet_text += df.to_string(index=False)
all_texts.append(sheet_text)
# Generate HTML preview of first sheet
first_df = pd.read_excel(excel_path, sheet_name=0)
preview_rows = min(10, len(first_df))
data_preview = first_df.head(preview_rows).to_html(classes="excel-preview-table", index=False)
# Process for vectorstore
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.create_documents(all_texts)
vectorstore = FAISS.from_documents(chunks, embeddings)
index_path = os.path.join(FAISS_INDEX_DIR, session_id)
vectorstore.save_local(index_path)
user_vectorstores[session_id] = vectorstore
os.unlink(excel_path)
excel_state = {"data_preview": data_preview, "total_sheets": len(sheet_names), "total_rows": total_rows}
return session_id, f"βœ… Successfully processed {len(chunks)} text chunks from Excel file", excel_state
except Exception as e:
if "excel_path" in locals() and os.path.exists(excel_path):
os.unlink(excel_path)
return None, f"Error processing Excel file: {str(e)}", {"data_preview": "", "total_sheets": 0, "total_rows": 0}
# Function to analyze image using SmolDocling
def analyze_image(image_file):
if image_file is None:
return "No image uploaded. Please upload an image to analyze."
if docling_processor is None or docling_model is None:
return "SmolDocling model not loaded. Please check your installation."
try:
# Process the image - image_file is a filepath string from Gradio
image = Image.open(image_file)
# Use the SmolDocling model
inputs = docling_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = docling_model.generate(
**inputs,
max_new_tokens=512,
temperature=0.1,
do_sample=False
)
# Decode the output
result = docling_processor.batch_decode(outputs, skip_special_tokens=True)[0]
# Format the result for display with technical emphasis
analysis = f"## Technical Document Analysis Results\n\n{result}\n\n"
analysis += "### Technical Insights\n\n"
analysis += "* The analysis provides technical information extracted from the document image.\n"
analysis += "* Consider this information as a starting point for further technical investigation.\n"
analysis += "* For code snippets or technical specifications, verify accuracy before implementation.\n"
return analysis
except Exception as e:
return f"Error analyzing image: {str(e)}"
# Function to handle different file types
def process_file(file_data, file_type):
if file_data is None:
return None, "No file uploaded", None
if file_type == "pdf":
return process_pdf(file_data)
elif file_type == "excel":
return process_excel(file_data)
elif file_type == "image":
# For image files, we'll just use them directly for analysis
# But we'll return a session ID to maintain consistency
session_id = str(uuid.uuid4())
return session_id, "βœ… Image file ready for analysis", None
else:
return None, "Unsupported file type", None
# Function for speech-to-text conversion
def speech_to_text():
try:
r = sr.Recognizer()
with sr.Microphone() as source:
r.adjust_for_ambient_noise(source)
audio = r.listen(source)
text = r.recognize_google(audio)
return text
except sr.UnknownValueError:
return "Could not understand audio. Please try again."
except sr.RequestError as e:
return f"Error with speech recognition service: {e}"
except Exception as e:
return f"Error converting speech to text: {str(e)}"
# Function for text-to-speech conversion
def text_to_speech(text, history):
if not text or not history:
return None
try:
# Get the last bot response
last_response = history[-1][1]
# Convert text to speech
tts = pyttsx3.init()
tts.setProperty('rate', 150)
tts.setProperty('volume', 0.9)
tts.save_to_file(last_response, "temp_output.mp3")
tts.runAndWait()
return "temp_output.mp3"
except Exception as e:
print(f"Error in text-to-speech: {e}")
return None
# Function to generate chatbot responses with Tech theme
def generate_response(message, session_id, model_name, history, web_search_enabled=True):
if not message:
return history
try:
context = ""
if session_id and session_id in user_vectorstores:
vectorstore = user_vectorstores[session_id]
docs = vectorstore.similarity_search(message, k=3)
if docs:
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
# Check if it's a GitHub repo search and web search is enabled
if web_search_enabled and re.match(r'^/github\s+.+', message, re.IGNORECASE):
query = re.sub(r'^/github\s+', '', message, flags=re.IGNORECASE)
repo_results = search_github_repos(query)
if repo_results:
response = "**GitHub Repository Search Results:**\n\n"
for repo in repo_results[:3]: # Limit to top 3 results
response += f"**[{repo['name']}]({repo['html_url']})**\n"
if repo['description']:
response += f"{repo['description']}\n"
response += f"⭐ {repo['stargazers_count']} | 🍴 {repo['forks_count']} | Language: {repo['language'] or 'Not specified'}\n"
response += f"Updated: {repo['updated_at'][:10]}\n\n"
history.append((message, response))
return history
else:
history.append((message, "No GitHub repositories found for your query."))
return history
# Check if it's a Stack Overflow search and web search is enabled
if web_search_enabled and re.match(r'^/stack\s+.+', message, re.IGNORECASE):
query = re.sub(r'^/stack\s+', '', message, flags=re.IGNORECASE)
qa_results = search_stackoverflow(query)
if qa_results:
response = "**Stack Overflow Search Results:**\n\n"
for qa in qa_results[:3]: # Limit to top 3 results
response += f"**[{qa['title']}]({qa['link']})**\n"
response += f"Score: {qa['score']} | Answers: {qa['answer_count']}\n"
if 'tags' in qa and qa['tags']:
response += f"Tags: {', '.join(qa['tags'][:5])}\n"
response += f"Asked: {qa['creation_date']}\n\n"
history.append((message, response))
return history
else:
history.append((message, "No Stack Overflow questions found for your query."))
return history
# Check if it's a code explanation request
code_match = re.search(r'/explain\s+```(?:.+?)?\n(.+?)```', message, re.DOTALL)
if code_match:
code = code_match.group(1).strip()
explanation = explain_code(code)
history.append((message, explanation))
return history
system_prompt = "You are a technical assistant specializing in software development, programming, and IT topics."
system_prompt += " Format code snippets with proper markdown code blocks with language specified."
system_prompt += " For technical explanations, be precise and include examples where helpful."
if context:
system_prompt += " Use the following context to answer the question if relevant: " + context
completion = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
],
temperature=0.7,
max_tokens=1024
)
response = completion.choices[0].message.content
history.append((message, response))
return history
except Exception as e:
history.append((message, f"Error generating response: {str(e)}"))
return history
# Functions to update PDF viewer
def update_pdf_viewer(pdf_state):
if not pdf_state["total_pages"]:
return 0, None, "No PDF uploaded yet"
try:
img_data = base64.b64decode(pdf_state["page_images"][0])
img = Image.open(io.BytesIO(img_data))
return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}"
except Exception as e:
print(f"Error decoding image: {e}")
return 0, None, "Error displaying PDF"
def update_image(page_num, pdf_state):
if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]:
return None
try:
img_data = base64.b64decode(pdf_state["page_images"][page_num - 1])
img = Image.open(io.BytesIO(img_data))
return img
except Exception as e:
print(f"Error decoding image: {e}")
return None
# GitHub API integration
def search_github_repos(query, sort="stars", order="desc", per_page=10):
"""Search for GitHub repositories"""
try:
github_token = os.getenv("GITHUB_TOKEN", "")
headers = {}
if github_token:
headers["Authorization"] = f"token {github_token}"
params = {
"q": query,
"sort": sort,
"order": order,
"per_page": per_page
}
response = requests.get(
"https://api.github.com/search/repositories",
headers=headers,
params=params
)
if response.status_code != 200:
print(f"GitHub API Error: {response.status_code} - {response.text}")
return []
data = response.json()
return data.get("items", [])
except Exception as e:
print(f"Error in GitHub search: {e}")
return []
# Stack Overflow API integration
def search_stackoverflow(query, sort="votes", site="stackoverflow", pagesize=10):
"""Search for questions on Stack Overflow"""
try:
params = {
"order": "desc",
"sort": sort,
"site": site,
"pagesize": pagesize,
"intitle": query
}
response = requests.get(
"https://api.stackexchange.com/2.3/search/advanced",
params=params
)
if response.status_code != 200:
print(f"Stack Exchange API Error: {response.status_code} - {response.text}")
return []
data = response.json()
# Process results to convert Unix timestamps to readable dates
for item in data.get("items", []):
if "creation_date" in item:
item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d")
return data.get("items", [])
except Exception as e:
print(f"Error in Stack Overflow search: {e}")
return []
def get_stackoverflow_answers(question_id, site="stackoverflow"):
"""Get answers for a specific question on Stack Overflow"""
try:
params = {
"order": "desc",
"sort": "votes",
"site": site,
"filter": "withbody" # Include the answer body in the response
}
response = requests.get(
f"https://api.stackexchange.com/2.3/questions/{question_id}/answers",
params=params
)
if response.status_code != 200:
print(f"Stack Exchange API Error: {response.status_code} - {response.text}")
return []
data = response.json()
# Process results
for item in data.get("items", []):
if "creation_date" in item:
item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d")
return data.get("items", [])
except Exception as e:
print(f"Error getting Stack Overflow answers: {e}")
return []
def explain_code(code):
"""Explain code using LLM"""
try:
system_prompt = "You are an expert programmer and code reviewer. Your task is to explain the provided code in a clear, concise manner. Include:"
system_prompt += "\n1. What the code does (high-level overview)"
system_prompt += "\n2. Key functions/components and their purposes"
system_prompt += "\n3. Potential issues or optimization opportunities"
system_prompt += "\n4. Any best practices that are followed or violated"
completion = client.chat.completions.create(
model="llama3-70b-8192", # Using more capable model for code explanation
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Explain this code:\n```\n{code}\n```"}
],
temperature=0.3,
max_tokens=1024
)
explanation = completion.choices[0].message.content
return f"**Code Explanation:**\n\n{explanation}"
except Exception as e:
return f"Error explaining code: {str(e)}"
def perform_repo_search(query, language, sort_by, min_stars):
"""Perform GitHub repository search with UI parameters"""
try:
if not query:
return "Please enter a search query"
# Build the search query with filters
search_query = query
if language and language != "any":
search_query += f" language:{language}"
if min_stars and min_stars != "0":
search_query += f" stars:>={min_stars}"
# Map sort_by to GitHub API parameters
sort_param = "stars"
if sort_by == "updated":
sort_param = "updated"
elif sort_by == "forks":
sort_param = "forks"
results = search_github_repos(search_query, sort=sort_param)
if not results:
return "No repositories found. Try different search terms."
# Format results as markdown
markdown = "## GitHub Repository Search Results\n\n"
for i, repo in enumerate(results, 1):
markdown += f"### {i}. [{repo['full_name']}]({repo['html_url']})\n\n"
if repo['description']:
markdown += f"{repo['description']}\n\n"
markdown += f"**Language:** {repo['language'] or 'Not specified'}\n"
markdown += f"**Stars:** {repo['stargazers_count']} | **Forks:** {repo['forks_count']} | **Watchers:** {repo['watchers_count']}\n"
markdown += f"**Created:** {repo['created_at'][:10]} | **Updated:** {repo['updated_at'][:10]}\n\n"
if repo.get('topics'):
markdown += f"**Topics:** {', '.join(repo['topics'])}\n\n"
if repo.get('license') and repo['license'].get('name'):
markdown += f"**License:** {repo['license']['name']}\n\n"
markdown += f"[View Repository]({repo['html_url']}) | [Clone URL]({repo['clone_url']})\n\n"
markdown += "---\n\n"
return markdown
except Exception as e:
return f"Error searching for repositories: {str(e)}"
def perform_stack_search(query, tag, sort_by):
"""Perform Stack Overflow search with UI parameters"""
try:
if not query:
return "Please enter a search query"
# Add tag to query if specified
if tag and tag != "any":
query_with_tag = f"{query} [tag:{tag}]"
else:
query_with_tag = query
# Map sort_by to Stack Exchange API parameters
sort_param = "votes"
if sort_by == "newest":
sort_param = "creation"
elif sort_by == "activity":
sort_param = "activity"
results = search_stackoverflow(query_with_tag, sort=sort_param)
if not results:
return "No questions found. Try different search terms."
# Format results as markdown
markdown = "## Stack Overflow Search Results\n\n"
for i, question in enumerate(results, 1):
markdown += f"### {i}. [{question['title']}]({question['link']})\n\n"
# Score and answer stats
markdown += f"**Score:** {question['score']} | **Answers:** {question['answer_count']}"
if question.get('is_answered'):
markdown += " βœ“ (Accepted answer available)"
markdown += "\n\n"
# Tags
if question.get('tags'):
markdown += "**Tags:** "
for tag in question['tags']:
markdown += f"`{tag}` "
markdown += "\n\n"
# Asked info
markdown += f"**Asked:** {question['creation_date']} | **Views:** {question.get('view_count', 'N/A')}\n\n"
markdown += f"[View Question]({question['link']})\n\n"
markdown += "---\n\n"
return markdown
except Exception as e:
return f"Error searching Stack Overflow: {str(e)}"
# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
current_session_id = gr.State(None)
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
excel_state = gr.State({"data_preview": "", "total_sheets": 0, "total_rows": 0})
file_type = gr.State("none")
audio_status = gr.State("Ready")
gr.HTML("""
<div class="header">
<div class="header-title">Tech-Vision Enhanced</div>
<div class="header-subtitle">Analyze technical documents, spreadsheets, and images with AI</div>
</div>
""")
with gr.Row(elem_classes="container"):
with gr.Column(scale=1, min_width=300):
with gr.Tabs():
with gr.TabItem("PDF"):
pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary")
pdf_upload_button = gr.Button("Process PDF", variant="primary")
with gr.TabItem("Excel"):
excel_file = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xls"], type="binary")
excel_upload_button = gr.Button("Process Excel", variant="primary")
with gr.TabItem("Image"):
image_input = gr.File(
label="Upload Image",
file_types=["image"],
type="filepath"
)
analyze_btn = gr.Button("Analyze Image")
file_status = gr.Markdown("No file uploaded yet")
# Model selector
model_dropdown = gr.Dropdown(
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
value="llama3-70b-8192",
label="Select Groq Model"
)
with gr.Column(scale=2, min_width=600):
with gr.Tabs():
with gr.TabItem("PDF Viewer"):
with gr.Column(elem_classes="pdf-viewer-container"):
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
pdf_stats = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box")
with gr.TabItem("Excel Viewer"):
excel_preview = gr.HTML(label="Excel Preview", elem_classes="file-preview")
excel_stats = gr.Markdown("No Excel file uploaded yet", elem_classes="stats-box")
with gr.TabItem("Image Analysis"):
image_preview = gr.Image(label="Image Preview", type="pil")
image_analysis_results = gr.Markdown("Upload an image and click 'Analyze Image' to see analysis results")
# Audio visualization elements
with gr.Row(elem_classes="container"):
with gr.Column():
audio_vis = gr.HTML("""
<div class="audio-visualization">
<div class="audio-bar" style="height: 5px;"></div>
<div class="audio-bar" style="height: 12px;"></div>
<div class="audio-bar" style="height: 18px;"></div>
<div class="audio-bar" style="height: 15px;"></div>
<div class="audio-bar" style="height: 10px;"></div>
<div class="audio-bar" style="height: 20px;"></div>
<div class="audio-bar" style="height: 14px;"></div>
<div class="audio-bar" style="height: 8px;"></div>
</div>
""", visible=False)
audio_status_display = gr.Markdown("", elem_classes="audio-status")
# Chat interface
with gr.Row(elem_classes="container"):
with gr.Column(scale=2, min_width=600):
chatbot = gr.Chatbot(
height=400,
show_copy_button=True,
elem_classes="chat-container",
type="messages" # Use the new messages format
)
with gr.Row():
msg = gr.Textbox(
show_label=False,
placeholder="Ask about your document or click the microphone to speak...",
scale=5
)
voice_btn = gr.Button("🎀", elem_classes="voice-btn")
send_btn = gr.Button("Send", scale=1)
with gr.Row(elem_classes="audio-controls"):
clear_btn = gr.Button("Clear Conversation")
speak_btn = gr.Button("πŸ”Š Speak Response", elem_classes="speak-btn")
audio_player = gr.Audio(label="Response Audio", type="filepath", visible=False)
# Event Handlers for PDF processing
pdf_upload_button.click(
lambda x: ("pdf", x),
inputs=[pdf_file],
outputs=[file_type, file_status]
).then(
process_pdf,
inputs=[pdf_file],
outputs=[current_session_id, file_status, pdf_state]
).then(
update_pdf_viewer,
inputs=[pdf_state],
outputs=[page_slider, pdf_image, pdf_stats]
)
# Event Handlers for Excel processing
def update_excel_preview(state):
if not state:
return "", "No Excel file uploaded yet"
preview = state.get("data_preview", "")
sheets = state.get("total_sheets", 0)
rows = state.get("total_rows", 0)
stats = f"**Excel Statistics:**\nSheets: {sheets}\nTotal Rows: {rows}"
return preview, stats
excel_upload_button.click(
lambda x: ("excel", x),
inputs=[excel_file],
outputs=[file_type, file_status]
).then(
process_excel,
inputs=[excel_file],
outputs=[current_session_id, file_status, excel_state]
).then(
update_excel_preview,
inputs=[excel_state],
outputs=[excel_preview, excel_stats]
)
# Event Handlers for Image Analysis
analyze_btn.click(
lambda x: ("image", x),
inputs=[image_input],
outputs=[file_type, file_status]
).then(
analyze_image,
inputs=[image_input],
outputs=[image_analysis_results]
).then(
lambda x: Image.open(x) if x else None,
inputs=[image_input],
outputs=[image_preview]
)
# Chat message handling
msg.submit(
generate_response,
inputs=[msg, current_session_id, model_dropdown, chatbot],
outputs=[chatbot]
).then(lambda: "", None, [msg])
send_btn.click(
generate_response,
inputs=[msg, current_session_id, model_dropdown, chatbot],
outputs=[chatbot]
).then(lambda: "", None, [msg])
# Improved speech-to-text with visual feedback
voice_btn.click(
speech_to_text,
inputs=[audio_status],
outputs=[audio_status_display, audio_vis, msg]
)
# Improved text-to-speech with visual feedback
speak_btn.click(
text_to_speech,
inputs=[audio_status, chatbot],
outputs=[audio_status_display, audio_vis, audio_player]
).then(
lambda x: gr.update(visible=True) if x else gr.update(visible=False),
inputs=[audio_player],
outputs=[audio_player]
)
# Page navigation for PDF
page_slider.change(
update_image,
inputs=[page_slider, pdf_state],
outputs=[pdf_image]
)
# Clear conversation and reset UI
clear_btn.click(
lambda: (
[], None, "No file uploaded yet",
{"page_images": [], "total_pages": 0, "total_words": 0},
{"data_preview": "", "total_sheets": 0, "total_rows": 0},
"none", 0, None, "No PDF uploaded yet", "",
"No Excel file uploaded yet", None,
"Upload an image and click 'Analyze Image' to see results", None,
gr.update(visible=False), "Ready"
),
None,
[chatbot, current_session_id, file_status, pdf_state, excel_state,
file_type, page_slider, pdf_image, pdf_stats, excel_preview,
excel_stats, image_preview, image_analysis_results, audio_player,
audio_vis, audio_status_display]
)
# Add footer with creator attribution
gr.HTML("""
<div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;">
Created by Calvin Allen Crawford
</div>
""")
# Launch the app
if __name__ == "__main__":
demo.launch()