File size: 37,601 Bytes
567d64c
 
 
 
 
095ee1e
 
 
9611f6e
31d5723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567d64c
 
095ee1e
567d64c
 
 
 
 
 
 
 
 
 
31d5723
 
 
 
 
 
 
 
 
 
 
 
 
1d16e59
 
 
 
 
 
 
 
 
 
 
 
 
567d64c
1d16e59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d5723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567d64c
 
095ee1e
567d64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d5723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567d64c
31d5723
567d64c
 
 
 
 
 
 
 
 
095ee1e
31d5723
 
095ee1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d5723
 
095ee1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567d64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095ee1e
567d64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095ee1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d16e59
 
567d64c
 
31d5723
 
 
 
567d64c
1d16e59
31d5723
 
567d64c
 
1d16e59
567d64c
31d5723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567d64c
 
 
 
 
31d5723
567d64c
 
 
 
 
 
31d5723
095ee1e
31d5723
 
 
095ee1e
31d5723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b83924
31d5723
567d64c
 
31d5723
 
 
 
 
 
567d64c
31d5723
 
 
 
 
 
567d64c
31d5723
 
 
 
 
567d64c
31d5723
 
 
 
 
 
567d64c
 
31d5723
567d64c
 
 
31d5723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567d64c
 
31d5723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567d64c
 
 
 
 
 
 
 
 
 
 
 
31d5723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2247005
 
31d5723
567d64c
 
 
 
 
095ee1e
31d5723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095ee1e
 
31d5723
 
 
 
 
 
567d64c
 
 
31d5723
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
import os
import tempfile
import uuid
import base64
import io
import json
import re
from datetime import datetime, timedelta

# Third-party imports
import gradio as gr
import groq
import numpy as np
import pandas as pd
import openpyxl
import requests
import fitz  # PyMuPDF
from PIL import Image
from dotenv import load_dotenv
from transformers import AutoProcessor, AutoModelForVision2Seq
import torch

# LangChain imports
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter

# Load environment variables
load_dotenv()
client = groq.Client(api_key=os.getenv("GROQ_TECH_API_KEY"))
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# Directory to store FAISS indexes
FAISS_INDEX_DIR = "faiss_indexes_tech"
if not os.path.exists(FAISS_INDEX_DIR):
    os.makedirs(FAISS_INDEX_DIR)

# Dictionary to store user-specific vectorstores
user_vectorstores = {}

# Load SmolDocling model for image analysis
def load_docling_model():
    try:
        processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
        model = AutoModelForVision2Seq.from_pretrained("ds4sd/SmolDocling-256M-preview")
        return processor, model
    except Exception as e:
        print(f"Error loading SmolDocling model: {e}")
        return None, None

# Initialize SmolDocling model
docling_processor, docling_model = load_docling_model()

# Custom CSS for Tech theme
custom_css = """
:root {
    --primary-color: #4285F4;  /* Google Blue */
    --secondary-color: #34A853;  /* Google Green */
    --light-background: #F8F9FA;
    --dark-text: #202124;
    --white: #FFFFFF;
    --border-color: #DADCE0;
    --code-bg: #F1F3F4;
    --code-text: #37474F;
    --error-color: #EA4335;  /* Google Red */
    --warning-color: #FBBC04;  /* Google Yellow */
}
body { background-color: var(--light-background); font-family: 'Google Sans', 'Roboto', sans-serif; }
.container { max-width: 1200px !important; margin: 0 auto !important; padding: 10px; }
.header { background-color: var(--white); border-bottom: 1px solid var(--border-color); padding: 15px 0; margin-bottom: 20px; border-radius: 12px 12px 0 0; box-shadow: 0 1px 2px rgba(0,0,0,0.05); }
.header-title { color: var(--primary-color); font-size: 1.8rem; font-weight: 700; text-align: center; }
.header-subtitle { color: var(--dark-text); font-size: 1rem; text-align: center; margin-top: 5px; }
.chat-container { border-radius: 8px !important; box-shadow: 0 1px 3px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; min-height: 500px; }
.message-user { background-color: var(--primary-color) !important; color: var(--white) !important; border-radius: 18px 18px 4px 18px !important; padding: 12px 16px !important; margin-left: auto !important; max-width: 80% !important; }
.message-bot { background-color: #F1F3F4 !important; color: var(--dark-text) !important; border-radius: 18px 18px 18px 4px !important; padding: 12px 16px !important; margin-right: auto !important; max-width: 80% !important; }
.input-area { background-color: var(--white) !important; border-top: 1px solid var(--border-color) !important; padding: 12px !important; border-radius: 0 0 12px 12px !important; }
.input-box { border: 1px solid var(--border-color) !important; border-radius: 24px !important; padding: 12px 16px !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; }
.send-btn { background-color: var(--primary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 10px 20px !important; font-weight: 500 !important; }
.clear-btn { background-color: #F1F3F4 !important; border: 1px solid var(--border-color) !important; border-radius: 24px !important; color: var(--dark-text) !important; padding: 8px 16px !important; font-weight: 500 !important; }
.pdf-viewer-container { border-radius: 8px !important; box-shadow: 0 1px 3px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; padding: 20px; }
.pdf-viewer-image { max-width: 100%; height: auto; border: 1px solid var(--border-color); border-radius: 8px; box-shadow: 0 1px 2px rgba(0,0,0,0.05); }
.stats-box { background-color: #E8F0FE; padding: 10px; border-radius: 8px; margin-top: 10px; }
.tool-container { background-color: var(--white); border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); padding: 15px; margin-bottom: 20px; border: 1px solid var(--border-color); }
.code-block { background-color: var(--code-bg); color: var(--code-text); padding: 12px; border-radius: 8px; font-family: 'Roboto Mono', monospace; overflow-x: auto; margin: 10px 0; border-left: 3px solid var(--primary-color); }
.repo-card { border: 1px solid var(--border-color); padding: 15px; margin: 10px 0; border-radius: 8px; background-color: var(--white); }
.repo-name { color: var(--primary-color); font-weight: bold; font-size: 1.1rem; margin-bottom: 5px; }
.repo-description { color: var(--dark-text); font-size: 0.9rem; margin-bottom: 10px; }
.repo-stats { display: flex; gap: 15px; color: #5F6368; font-size: 0.85rem; }
.repo-stat { display: flex; align-items: center; gap: 5px; }
.qa-card { border-left: 3px solid var(--secondary-color); padding: 10px 15px; margin: 15px 0; background-color: #F8F9FA; border-radius: 0 8px 8px 0; }
.qa-title { font-weight: bold; color: var(--dark-text); margin-bottom: 5px; }
.qa-body { color: var(--dark-text); font-size: 0.95rem; margin-bottom: 10px; }
.qa-meta { display: flex; justify-content: space-between; color: #5F6368; font-size: 0.85rem; }
.tag { background-color: #E8F0FE; color: var(--primary-color); padding: 4px 8px; border-radius: 4px; font-size: 0.8rem; margin-right: 5px; display: inline-block; }
.toggle-container { display: flex; align-items: center; margin-bottom: 15px; }
.toggle-label { margin-right: 10px; font-weight: 500; }
.search-toggle { margin-left: 5px; }
.voice-btn { background-color: var(--primary-color) !important; border-radius: 50% !important; width: 44px !important; height: 44px !important; display: flex !important; align-items: center !important; justify-content: center !important; color: var(--white) !important; box-shadow: 0 2px 5px rgba(0,0,0,0.2) !important; }
.speak-btn { background-color: var(--secondary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 8px 16px !important; font-weight: 500 !important; margin-left: 10px !important; }
.audio-controls { display: flex; align-items: center; margin-top: 10px; }
/* Audio Visualization Elements */
.audio-visualization {
    display: flex;
    align-items: center;
    justify-content: center;
    gap: 4px;
    height: 40px;
    padding: 10px;
    background-color: rgba(0,0,0,0.05);
    border-radius: 12px;
    margin: 10px 0;
}
.audio-bar {
    width: 3px;
    background-color: var(--accent-color);
    border-radius: 2px;
    height: 5px;
    transition: height 0.1s ease;
}
.audio-status {
    font-size: 0.85rem;
    color: var(--secondary-color);
    text-align: center;
    margin-top: 5px;
    font-style: italic;
}
.recording-indicator {
    width: 12px;
    height: 12px;
    border-radius: 50%;
    background-color: #ff4b4b;
    margin-right: 8px;
    animation: blink 1s infinite;
}
.playing-indicator {
    width: 12px;
    height: 12px;
    border-radius: 50%;
    background-color: #4bff4b;
    margin-right: 8px;
    animation: pulse 1s infinite;
}
@keyframes blink {
    0% { opacity: 1; }
    50% { opacity: 0.4; }
    100% { opacity: 1; }
}
@keyframes pulse {
    0% { transform: scale(1); }
    50% { transform: scale(1.2); }
    100% { transform: scale(1); }
}
.file-upload-enhancement .file-preview {
    max-height: 200px;
    overflow: auto;
    border: 1px solid var(--border-color);
    border-radius: 8px;
    padding: 10px;
    margin-top: 10px;
    background-color: rgba(0,0,0,0.02);
}
.excel-preview-table {
    width: 100%;
    border-collapse: collapse;
    font-size: 0.85rem;
}
.excel-preview-table th, .excel-preview-table td {
    border: 1px solid #ddd;
    padding: 4px 8px;
    text-align: left;
}
.excel-preview-table th {
    background-color: var(--secondary-color);
    color: white;
}
.excel-preview-table tr:nth-child(even) {
    background-color: rgba(0,0,0,0.03);
}
"""

# Function to process PDF files
def process_pdf(pdf_file):
    if pdf_file is None:
        return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0}
    try:
        session_id = str(uuid.uuid4())
        with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
            temp_file.write(pdf_file)
            pdf_path = temp_file.name
        
        doc = fitz.open(pdf_path)
        texts = [page.get_text() for page in doc]
        page_images = []
        for page in doc:
            pix = page.get_pixmap()
            img_bytes = pix.tobytes("png")
            img_base64 = base64.b64encode(img_bytes).decode("utf-8")
            page_images.append(img_base64)
        total_pages = len(doc)
        total_words = sum(len(text.split()) for text in texts)
        doc.close()

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        chunks = text_splitter.create_documents(texts)
        vectorstore = FAISS.from_documents(chunks, embeddings)
        index_path = os.path.join(FAISS_INDEX_DIR, session_id)
        vectorstore.save_local(index_path)
        user_vectorstores[session_id] = vectorstore

        os.unlink(pdf_path)
        pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words}
        return session_id, f"βœ… Successfully processed {len(chunks)} text chunks from your PDF", pdf_state
    except Exception as e:
        if "pdf_path" in locals() and os.path.exists(pdf_path):
            os.unlink(pdf_path)
        return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}

# New function to process Excel files
def process_excel(excel_file):
    if excel_file is None:
        return None, "No file uploaded", {"data_preview": "", "total_sheets": 0, "total_rows": 0}
    
    try:
        session_id = str(uuid.uuid4())
        with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as temp_file:
            temp_file.write(excel_file)
            excel_path = temp_file.name
        
        # Read Excel file with pandas
        excel_data = pd.ExcelFile(excel_path)
        sheet_names = excel_data.sheet_names
        all_texts = []
        total_rows = 0
        
        # Process each sheet
        for sheet in sheet_names:
            df = pd.read_excel(excel_path, sheet_name=sheet)
            total_rows += len(df)
            
            # Convert dataframe to text for vectorization
            sheet_text = f"Sheet: {sheet}\n"
            sheet_text += df.to_string(index=False)
            all_texts.append(sheet_text)
        
        # Generate HTML preview of first sheet
        first_df = pd.read_excel(excel_path, sheet_name=0)
        preview_rows = min(10, len(first_df))
        data_preview = first_df.head(preview_rows).to_html(classes="excel-preview-table", index=False)
        
        # Process for vectorstore
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        chunks = text_splitter.create_documents(all_texts)
        vectorstore = FAISS.from_documents(chunks, embeddings)
        index_path = os.path.join(FAISS_INDEX_DIR, session_id)
        vectorstore.save_local(index_path)
        user_vectorstores[session_id] = vectorstore

        os.unlink(excel_path)
        excel_state = {"data_preview": data_preview, "total_sheets": len(sheet_names), "total_rows": total_rows}
        return session_id, f"βœ… Successfully processed {len(chunks)} text chunks from Excel file", excel_state
    except Exception as e:
        if "excel_path" in locals() and os.path.exists(excel_path):
            os.unlink(excel_path)
        return None, f"Error processing Excel file: {str(e)}", {"data_preview": "", "total_sheets": 0, "total_rows": 0}

# Function to analyze image using SmolDocling
def analyze_image(image_file):
    if image_file is None:
        return "No image uploaded. Please upload an image to analyze."
    
    if docling_processor is None or docling_model is None:
        return "SmolDocling model not loaded. Please check your installation."
    
    try:
        # Process the image - image_file is a filepath string from Gradio
        image = Image.open(image_file)
        
        # Use the SmolDocling model
        inputs = docling_processor(images=image, return_tensors="pt")
        with torch.no_grad():
            outputs = docling_model.generate(
                **inputs, 
                max_new_tokens=512,
                temperature=0.1,
                do_sample=False
            )
        
        # Decode the output
        result = docling_processor.batch_decode(outputs, skip_special_tokens=True)[0]
        
        # Format the result for display with technical emphasis
        analysis = f"## Technical Document Analysis Results\n\n{result}\n\n"
        analysis += "### Technical Insights\n\n"
        analysis += "* The analysis provides technical information extracted from the document image.\n"
        analysis += "* Consider this information as a starting point for further technical investigation.\n"
        analysis += "* For code snippets or technical specifications, verify accuracy before implementation.\n"
        
        return analysis
    except Exception as e:
        return f"Error analyzing image: {str(e)}"

# Function to handle different file types
def process_file(file_data, file_type):
    if file_data is None:
        return None, "No file uploaded", None
    
    if file_type == "pdf":
        return process_pdf(file_data)
    elif file_type == "excel":
        return process_excel(file_data)
    elif file_type == "image":
        # For image files, we'll just use them directly for analysis
        # But we'll return a session ID to maintain consistency
        session_id = str(uuid.uuid4())
        return session_id, "βœ… Image file ready for analysis", None
    else:
        return None, "Unsupported file type", None

# Function for speech-to-text conversion
def speech_to_text():
    try:
        r = sr.Recognizer()
        with sr.Microphone() as source:
            r.adjust_for_ambient_noise(source)
            audio = r.listen(source)
            text = r.recognize_google(audio)
            return text
    except sr.UnknownValueError:
        return "Could not understand audio. Please try again."
    except sr.RequestError as e:
        return f"Error with speech recognition service: {e}"
    except Exception as e:
        return f"Error converting speech to text: {str(e)}"

# Function for text-to-speech conversion
def text_to_speech(text, history):
    if not text or not history:
        return None
    
    try:
        # Get the last bot response
        last_response = history[-1][1]
        
        # Convert text to speech
        tts = pyttsx3.init()
        tts.setProperty('rate', 150)
        tts.setProperty('volume', 0.9)
        tts.save_to_file(last_response, "temp_output.mp3")
        tts.runAndWait()
        
        return "temp_output.mp3"
    except Exception as e:
        print(f"Error in text-to-speech: {e}")
        return None

# Function to generate chatbot responses with Tech theme
def generate_response(message, session_id, model_name, history, web_search_enabled=True):
    if not message:
        return history
    try:
        context = ""
        if session_id and session_id in user_vectorstores:
            vectorstore = user_vectorstores[session_id]
            docs = vectorstore.similarity_search(message, k=3)
            if docs:
                context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
        
        # Check if it's a GitHub repo search and web search is enabled
        if web_search_enabled and re.match(r'^/github\s+.+', message, re.IGNORECASE):
            query = re.sub(r'^/github\s+', '', message, flags=re.IGNORECASE)
            repo_results = search_github_repos(query)
            if repo_results:
                response = "**GitHub Repository Search Results:**\n\n"
                for repo in repo_results[:3]:  # Limit to top 3 results
                    response += f"**[{repo['name']}]({repo['html_url']})**\n"
                    if repo['description']:
                        response += f"{repo['description']}\n"
                    response += f"⭐ {repo['stargazers_count']} | 🍴 {repo['forks_count']} | Language: {repo['language'] or 'Not specified'}\n"
                    response += f"Updated: {repo['updated_at'][:10]}\n\n"
                history.append((message, response))
                return history
            else:
                history.append((message, "No GitHub repositories found for your query."))
                return history
        
        # Check if it's a Stack Overflow search and web search is enabled
        if web_search_enabled and re.match(r'^/stack\s+.+', message, re.IGNORECASE):
            query = re.sub(r'^/stack\s+', '', message, flags=re.IGNORECASE)
            qa_results = search_stackoverflow(query)
            if qa_results:
                response = "**Stack Overflow Search Results:**\n\n"
                for qa in qa_results[:3]:  # Limit to top 3 results
                    response += f"**[{qa['title']}]({qa['link']})**\n"
                    response += f"Score: {qa['score']} | Answers: {qa['answer_count']}\n"
                    if 'tags' in qa and qa['tags']:
                        response += f"Tags: {', '.join(qa['tags'][:5])}\n"
                    response += f"Asked: {qa['creation_date']}\n\n"
                history.append((message, response))
                return history
            else:
                history.append((message, "No Stack Overflow questions found for your query."))
                return history
        
        # Check if it's a code explanation request
        code_match = re.search(r'/explain\s+```(?:.+?)?\n(.+?)```', message, re.DOTALL)
        if code_match:
            code = code_match.group(1).strip()
            explanation = explain_code(code)
            history.append((message, explanation))
            return history
                
        system_prompt = "You are a technical assistant specializing in software development, programming, and IT topics."
        system_prompt += " Format code snippets with proper markdown code blocks with language specified."
        system_prompt += " For technical explanations, be precise and include examples where helpful."
        if context:
            system_prompt += " Use the following context to answer the question if relevant: " + context
        completion = client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": message}
            ],
            temperature=0.7,
            max_tokens=1024
        )
        response = completion.choices[0].message.content
        history.append((message, response))
        return history
    except Exception as e:
        history.append((message, f"Error generating response: {str(e)}"))
        return history

# Functions to update PDF viewer
def update_pdf_viewer(pdf_state):
    if not pdf_state["total_pages"]:
        return 0, None, "No PDF uploaded yet"
    try:
        img_data = base64.b64decode(pdf_state["page_images"][0])
        img = Image.open(io.BytesIO(img_data))
        return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}"
    except Exception as e:
        print(f"Error decoding image: {e}")
        return 0, None, "Error displaying PDF"

def update_image(page_num, pdf_state):
    if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]:
        return None
    try:
        img_data = base64.b64decode(pdf_state["page_images"][page_num - 1])
        img = Image.open(io.BytesIO(img_data))
        return img
    except Exception as e:
        print(f"Error decoding image: {e}")
        return None

# GitHub API integration
def search_github_repos(query, sort="stars", order="desc", per_page=10):
    """Search for GitHub repositories"""
    try:
        github_token = os.getenv("GITHUB_TOKEN", "")
        headers = {}
        if github_token:
            headers["Authorization"] = f"token {github_token}"
            
        params = {
            "q": query,
            "sort": sort,
            "order": order,
            "per_page": per_page
        }
        
        response = requests.get(
            "https://api.github.com/search/repositories",
            headers=headers,
            params=params
        )
        
        if response.status_code != 200:
            print(f"GitHub API Error: {response.status_code} - {response.text}")
            return []
            
        data = response.json()
        return data.get("items", [])
    except Exception as e:
        print(f"Error in GitHub search: {e}")
        return []

# Stack Overflow API integration
def search_stackoverflow(query, sort="votes", site="stackoverflow", pagesize=10):
    """Search for questions on Stack Overflow"""
    try:
        params = {
            "order": "desc",
            "sort": sort,
            "site": site,
            "pagesize": pagesize,
            "intitle": query
        }
        
        response = requests.get(
            "https://api.stackexchange.com/2.3/search/advanced",
            params=params
        )
        
        if response.status_code != 200:
            print(f"Stack Exchange API Error: {response.status_code} - {response.text}")
            return []
            
        data = response.json()
        
        # Process results to convert Unix timestamps to readable dates
        for item in data.get("items", []):
            if "creation_date" in item:
                item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d")
                
        return data.get("items", [])
    except Exception as e:
        print(f"Error in Stack Overflow search: {e}")
        return []

def get_stackoverflow_answers(question_id, site="stackoverflow"):
    """Get answers for a specific question on Stack Overflow"""
    try:
        params = {
            "order": "desc",
            "sort": "votes",
            "site": site,
            "filter": "withbody"  # Include the answer body in the response
        }
        
        response = requests.get(
            f"https://api.stackexchange.com/2.3/questions/{question_id}/answers",
            params=params
        )
        
        if response.status_code != 200:
            print(f"Stack Exchange API Error: {response.status_code} - {response.text}")
            return []
            
        data = response.json()
        
        # Process results
        for item in data.get("items", []):
            if "creation_date" in item:
                item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d")
                
        return data.get("items", [])
    except Exception as e:
        print(f"Error getting Stack Overflow answers: {e}")
        return []

def explain_code(code):
    """Explain code using LLM"""
    try:
        system_prompt = "You are an expert programmer and code reviewer. Your task is to explain the provided code in a clear, concise manner. Include:"
        system_prompt += "\n1. What the code does (high-level overview)"
        system_prompt += "\n2. Key functions/components and their purposes"
        system_prompt += "\n3. Potential issues or optimization opportunities"
        system_prompt += "\n4. Any best practices that are followed or violated"
        
        completion = client.chat.completions.create(
            model="llama3-70b-8192",  # Using more capable model for code explanation
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": f"Explain this code:\n```\n{code}\n```"}
            ],
            temperature=0.3,
            max_tokens=1024
        )
        
        explanation = completion.choices[0].message.content
        return f"**Code Explanation:**\n\n{explanation}"
    except Exception as e:
        return f"Error explaining code: {str(e)}"

def perform_repo_search(query, language, sort_by, min_stars):
    """Perform GitHub repository search with UI parameters"""
    try:
        if not query:
            return "Please enter a search query"
            
        # Build the search query with filters
        search_query = query
        if language and language != "any":
            search_query += f" language:{language}"
        if min_stars and min_stars != "0":
            search_query += f" stars:>={min_stars}"
            
        # Map sort_by to GitHub API parameters
        sort_param = "stars"
        if sort_by == "updated":
            sort_param = "updated"
        elif sort_by == "forks":
            sort_param = "forks"
            
        results = search_github_repos(search_query, sort=sort_param)
        
        if not results:
            return "No repositories found. Try different search terms."
            
        # Format results as markdown
        markdown = "## GitHub Repository Search Results\n\n"
        
        for i, repo in enumerate(results, 1):
            markdown += f"### {i}. [{repo['full_name']}]({repo['html_url']})\n\n"
            
            if repo['description']:
                markdown += f"{repo['description']}\n\n"
                
            markdown += f"**Language:** {repo['language'] or 'Not specified'}\n"
            markdown += f"**Stars:** {repo['stargazers_count']} | **Forks:** {repo['forks_count']} | **Watchers:** {repo['watchers_count']}\n"
            markdown += f"**Created:** {repo['created_at'][:10]} | **Updated:** {repo['updated_at'][:10]}\n\n"
            
            if repo.get('topics'):
                markdown += f"**Topics:** {', '.join(repo['topics'])}\n\n"
                
            if repo.get('license') and repo['license'].get('name'):
                markdown += f"**License:** {repo['license']['name']}\n\n"
                
            markdown += f"[View Repository]({repo['html_url']}) | [Clone URL]({repo['clone_url']})\n\n"
            markdown += "---\n\n"
            
        return markdown
    except Exception as e:
        return f"Error searching for repositories: {str(e)}"

def perform_stack_search(query, tag, sort_by):
    """Perform Stack Overflow search with UI parameters"""
    try:
        if not query:
            return "Please enter a search query"
            
        # Add tag to query if specified
        if tag and tag != "any":
            query_with_tag = f"{query} [tag:{tag}]"
        else:
            query_with_tag = query
            
        # Map sort_by to Stack Exchange API parameters
        sort_param = "votes"
        if sort_by == "newest":
            sort_param = "creation"
        elif sort_by == "activity":
            sort_param = "activity"
            
        results = search_stackoverflow(query_with_tag, sort=sort_param)
        
        if not results:
            return "No questions found. Try different search terms."
            
        # Format results as markdown
        markdown = "## Stack Overflow Search Results\n\n"
        
        for i, question in enumerate(results, 1):
            markdown += f"### {i}. [{question['title']}]({question['link']})\n\n"
            
            # Score and answer stats
            markdown += f"**Score:** {question['score']} | **Answers:** {question['answer_count']}"
            if question.get('is_answered'):
                markdown += " βœ“ (Accepted answer available)"
            markdown += "\n\n"
            
            # Tags
            if question.get('tags'):
                markdown += "**Tags:** "
                for tag in question['tags']:
                    markdown += f"`{tag}` "
                markdown += "\n\n"
                
            # Asked info
            markdown += f"**Asked:** {question['creation_date']} | **Views:** {question.get('view_count', 'N/A')}\n\n"
            
            markdown += f"[View Question]({question['link']})\n\n"
            markdown += "---\n\n"
            
        return markdown
    except Exception as e:
        return f"Error searching Stack Overflow: {str(e)}"

# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    current_session_id = gr.State(None)
    pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
    excel_state = gr.State({"data_preview": "", "total_sheets": 0, "total_rows": 0})
    file_type = gr.State("none")
    audio_status = gr.State("Ready")
    
    gr.HTML("""
    <div class="header">
        <div class="header-title">Tech-Vision Enhanced</div>
        <div class="header-subtitle">Analyze technical documents, spreadsheets, and images with AI</div>
    </div>
    """)
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=1, min_width=300):
            with gr.Tabs():
                with gr.TabItem("PDF"):
                    pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary")
                    pdf_upload_button = gr.Button("Process PDF", variant="primary")
                
                with gr.TabItem("Excel"):
                    excel_file = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xls"], type="binary")
                    excel_upload_button = gr.Button("Process Excel", variant="primary")
                
                with gr.TabItem("Image"):
                    image_input = gr.File(
                        label="Upload Image", 
                        file_types=["image"],
                        type="filepath"
                    )
                    analyze_btn = gr.Button("Analyze Image")
            
            file_status = gr.Markdown("No file uploaded yet")
            
            # Model selector
            model_dropdown = gr.Dropdown(
                choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
                value="llama3-70b-8192",
                label="Select Groq Model"
            )
        
        with gr.Column(scale=2, min_width=600):
            with gr.Tabs():
                with gr.TabItem("PDF Viewer"):
                    with gr.Column(elem_classes="pdf-viewer-container"):
                        page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
                        pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
                        pdf_stats = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box")
                
                with gr.TabItem("Excel Viewer"):
                    excel_preview = gr.HTML(label="Excel Preview", elem_classes="file-preview")
                    excel_stats = gr.Markdown("No Excel file uploaded yet", elem_classes="stats-box")
                
                with gr.TabItem("Image Analysis"):
                    image_preview = gr.Image(label="Image Preview", type="pil")
                    image_analysis_results = gr.Markdown("Upload an image and click 'Analyze Image' to see analysis results")
    
    # Audio visualization elements
    with gr.Row(elem_classes="container"):
        with gr.Column():
            audio_vis = gr.HTML("""
            <div class="audio-visualization">
                <div class="audio-bar" style="height: 5px;"></div>
                <div class="audio-bar" style="height: 12px;"></div>
                <div class="audio-bar" style="height: 18px;"></div>
                <div class="audio-bar" style="height: 15px;"></div>
                <div class="audio-bar" style="height: 10px;"></div>
                <div class="audio-bar" style="height: 20px;"></div>
                <div class="audio-bar" style="height: 14px;"></div>
                <div class="audio-bar" style="height: 8px;"></div>
            </div>
            """, visible=False)
            audio_status_display = gr.Markdown("", elem_classes="audio-status")
    
    # Chat interface
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=2, min_width=600):
            chatbot = gr.Chatbot(
                height=400, 
                show_copy_button=True, 
                elem_classes="chat-container",
                type="messages"  # Use the new messages format
            )
            with gr.Row():
                msg = gr.Textbox(
                    show_label=False, 
                    placeholder="Ask about your document or click the microphone to speak...", 
                    scale=5
                )
                voice_btn = gr.Button("🎀", elem_classes="voice-btn")
                send_btn = gr.Button("Send", scale=1)
                
            with gr.Row(elem_classes="audio-controls"):
                clear_btn = gr.Button("Clear Conversation")
                speak_btn = gr.Button("πŸ”Š Speak Response", elem_classes="speak-btn")
                audio_player = gr.Audio(label="Response Audio", type="filepath", visible=False)
    
    # Event Handlers for PDF processing
    pdf_upload_button.click(
        lambda x: ("pdf", x),
        inputs=[pdf_file],
        outputs=[file_type, file_status]
    ).then(
        process_pdf,
        inputs=[pdf_file],
        outputs=[current_session_id, file_status, pdf_state]
    ).then(
        update_pdf_viewer,
        inputs=[pdf_state],
        outputs=[page_slider, pdf_image, pdf_stats]
    )
    
    # Event Handlers for Excel processing
    def update_excel_preview(state):
        if not state:
            return "", "No Excel file uploaded yet"
        preview = state.get("data_preview", "")
        sheets = state.get("total_sheets", 0)
        rows = state.get("total_rows", 0)
        stats = f"**Excel Statistics:**\nSheets: {sheets}\nTotal Rows: {rows}"
        return preview, stats
    
    excel_upload_button.click(
        lambda x: ("excel", x),
        inputs=[excel_file],
        outputs=[file_type, file_status]
    ).then(
        process_excel,
        inputs=[excel_file],
        outputs=[current_session_id, file_status, excel_state]
    ).then(
        update_excel_preview,
        inputs=[excel_state],
        outputs=[excel_preview, excel_stats]
    )
    
    # Event Handlers for Image Analysis
    analyze_btn.click(
        lambda x: ("image", x),
        inputs=[image_input],
        outputs=[file_type, file_status]
    ).then(
        analyze_image,
        inputs=[image_input],
        outputs=[image_analysis_results]
    ).then(
        lambda x: Image.open(x) if x else None,
        inputs=[image_input],
        outputs=[image_preview]
    )
    
    # Chat message handling
    msg.submit(
        generate_response,
        inputs=[msg, current_session_id, model_dropdown, chatbot],
        outputs=[chatbot]
    ).then(lambda: "", None, [msg])
    
    send_btn.click(
        generate_response,
        inputs=[msg, current_session_id, model_dropdown, chatbot],
        outputs=[chatbot]
    ).then(lambda: "", None, [msg])
    
    # Improved speech-to-text with visual feedback
    voice_btn.click(
        speech_to_text,
        inputs=[audio_status],
        outputs=[audio_status_display, audio_vis, msg]
    )
    
    # Improved text-to-speech with visual feedback
    speak_btn.click(
        text_to_speech,
        inputs=[audio_status, chatbot],
        outputs=[audio_status_display, audio_vis, audio_player]
    ).then(
        lambda x: gr.update(visible=True) if x else gr.update(visible=False),
        inputs=[audio_player],
        outputs=[audio_player]
    )
    
    # Page navigation for PDF
    page_slider.change(
        update_image,
        inputs=[page_slider, pdf_state],
        outputs=[pdf_image]
    )
    
    # Clear conversation and reset UI
    clear_btn.click(
        lambda: (
            [], None, "No file uploaded yet", 
            {"page_images": [], "total_pages": 0, "total_words": 0},
            {"data_preview": "", "total_sheets": 0, "total_rows": 0},
            "none", 0, None, "No PDF uploaded yet", "", 
            "No Excel file uploaded yet", None, 
            "Upload an image and click 'Analyze Image' to see results", None,
            gr.update(visible=False), "Ready"
        ),
        None,
        [chatbot, current_session_id, file_status, pdf_state, excel_state, 
         file_type, page_slider, pdf_image, pdf_stats, excel_preview, 
         excel_stats, image_preview, image_analysis_results, audio_player, 
         audio_vis, audio_status_display]
    )

    # Add footer with creator attribution
    gr.HTML("""
    <div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;">
        Created by Calvin Allen Crawford
    </div>
    """)

# Launch the app
if __name__ == "__main__":
    demo.launch()