File size: 2,490 Bytes
48a29d5 d373e61 48a29d5 b25a8be c3125e8 b25a8be c3125e8 b25a8be c3125e8 b25a8be 874cf23 b25a8be 874cf23 b25a8be 874cf23 b25a8be 874cf23 b25a8be 874cf23 c3125e8 48a29d5 c3125e8 48a29d5 c3125e8 48a29d5 c3125e8 874cf23 48a29d5 874cf23 48a29d5 874cf23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio
from transformers import pipeline
# Initialize the Hugging Face model
model = pipeline(model='google/flan-t5-base')
# Define the chatbot function
def chatbot(input_text):
# Generate a response from the Hugging Face model
response = model(input_text, max_length=250, do_sample=True)[0]['generated_text'].strip()
# Return the bot response
return response
# Define the Gradio interface
gradio_interface = gradio.Interface(
fn=chatbot,
inputs='text',
outputs='text',
title='Chatbot',
description='A weird chatbot conversations experience.',
examples=[
['Hi, how are you?']
]
)
# Launch the Gradio interface
gradio_interface.launch()
# from dotenv import load_dotenv
# from langchain import HuggingFaceHub, LLMChain
# from langchain import PromptTemplates
# import gradio
# load_dotenv()
# os.getenv('HF_API')
# hub_llm = HuggingFaceHub(repo_id='facebook/blenderbot-400M-distill')
# prompt = prompt_templates(
# input_variable = ["question"],
# template = "Answer is: {question}"
# )
# hub_chain = LLMChain(prompt=prompt, llm=hub_llm, verbose=True)
# Sample code for AI language model interaction
# from transformers import GPT2Tokenizer, GPT2LMHeadModel
# import gradio
# def simptok(data):
# # Load pre-trained model and tokenizer (using the transformers library)
# model_name = "gpt2"
# tokenizer = GPT2Tokenizer.from_pretrained(model_name)
# model = GPT2LMHeadModel.from_pretrained(model_name)
# # User input
# user_input = data
# # Tokenize input
# input_ids = tokenizer.encode(user_input, return_tensors="pt")
# # Generate response
# output = model.generate(input_ids, max_length=50, num_return_sequences=1)
# response = tokenizer.decode(output[0], skip_special_tokens=True)
# return response
# def responsenew(data):
# return simptok(data)
# from hugchat import hugchat
# import gradio as gr
# import time
# # Create a chatbot connection
# chatbot = hugchat.ChatBot(cookie_path="cookies.json")
# # New a conversation (ignore error)
# id = chatbot.new_conversation()
# chatbot.change_conversation(id)
# def get_answer(data):
# return chatbot.chat(data)
# gradio_interface = gr.Interface(
# fn = get_answer,
# inputs = "text",
# outputs = "text"
# )
# gradio_interface.launch()
# gradio_interface = gradio.Interface(
# fn = responsenew,
# inputs = "text",
# outputs = "text"
# )
# gradio_interface.launch()
|