# from dotenv import load_dotenv | |
# from langchain import HuggingFaceHub, LLMChain | |
# from langchain import PromptTemplates | |
# import gradio | |
# load_dotenv() | |
# os.getenv('HF_API') | |
# hub_llm = HuggingFaceHub(repo_id='facebook/blenderbot-400M-distill') | |
# prompt = prompt_templates( | |
# input_variable = ["question"], | |
# template = "Answer is: {question}" | |
# ) | |
# hub_chain = LLMChain(prompt=prompt, llm=hub_llm, verbose=True) | |
# Sample code for AI language model interaction | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
import gradio | |
def simptok(data): | |
# Load pre-trained model and tokenizer (using the transformers library) | |
model_name = "gpt2" | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
model = GPT2LMHeadModel.from_pretrained(model_name) | |
# User input | |
user_input = data | |
# Tokenize input | |
input_ids = tokenizer.encode(user_input, return_tensors="pt") | |
# Generate response | |
output = model.generate(input_ids, max_length=50, num_return_sequences=1) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
print(response) | |
def responsenew(data): | |
return simptok(data) | |
gradio_interface = gradio.Interface( | |
fn = responsenew, | |
inputs = "text", | |
outputs = "text" | |
) | |
gradio_interface.launch() | |