|
|
|
|
|
import gradio as gr |
|
from transformers import LlamaForCausalLM, LlamaTokenizer |
|
import datasets |
|
import torch |
|
import json |
|
import os |
|
import pdfplumber |
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
from accelerate import Accelerator |
|
import bitsandbytes |
|
import sentencepiece |
|
import huggingface_hub |
|
from transformers import TrainingArguments, Trainer |
|
|
|
|
|
print("Environment variables:", dict(os.environ)) |
|
|
|
|
|
|
|
LLama = os.getenv("LLama") |
|
if not LLama: |
|
raise ValueError("LLama token not found in environment variables. Please set it in Hugging Face Space secrets under 'Settings' > 'Secrets' as 'LLama'.") |
|
|
|
|
|
print(f"Retrieved LLama token: {LLama[:5]}... (first 5 chars for security)") |
|
|
|
|
|
huggingface_hub.login(token=LLama) |
|
|
|
|
|
MODEL_ID = "meta-llama/Llama-2-7b-hf" |
|
tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
|
|
|
|
model = LlamaForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
load_in_8bit=True |
|
) |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
model = prepare_model_for_kbit_training(model) |
|
peft_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"] |
|
) |
|
model = get_peft_model(model, peft_config) |
|
model.print_trainable_parameters() |
|
|
|
|
|
def train_ui(files): |
|
try: |
|
|
|
raw_text = "" |
|
dataset = None |
|
for file in files: |
|
if file.name.endswith(".pdf"): |
|
with pdfplumber.open(file.name) as pdf: |
|
for page in pdf.pages: |
|
raw_text += page.extract_text() or "" |
|
elif file.name.endswith(".json"): |
|
with open(file.name, "r", encoding="utf-8") as f: |
|
raw_data = json.load(f) |
|
training_data = raw_data.get("training_pairs", raw_data) |
|
with open("temp_fraud_data.json", "w", encoding="utf-8") as f: |
|
json.dump({"training_pairs": training_data}, f) |
|
dataset = datasets.load_dataset("json", data_files="temp_fraud_data.json") |
|
|
|
if not raw_text and not dataset: |
|
return "Error: No valid PDF or JSON data found." |
|
|
|
|
|
if raw_text: |
|
def create_training_pairs(text): |
|
pairs = [] |
|
if "Haloperidol" in text and "daily" in text.lower(): |
|
pairs.append({ |
|
"input": "Patient received Haloperidol daily. Is this overmedication?", |
|
"output": "Yes, daily Haloperidol use without documented severe psychosis or failed alternatives may indicate overmedication, violating CMS guidelines." |
|
}) |
|
if "Lorazepam" in text and "frequent" in text.lower(): |
|
pairs.append({ |
|
"input": "Care logs show frequent Lorazepam use with a 90-day supply. Is this suspicious?", |
|
"output": "Yes, frequent use with a large supply suggests potential overuse or mismanagement, a fraud indicator." |
|
}) |
|
return pairs |
|
training_data = create_training_pairs(raw_text) |
|
with open("temp_fraud_data.json", "w") as f: |
|
json.dump({"training_pairs": training_data}, f) |
|
dataset = datasets.load_dataset("json", data_files="temp_fraud_data.json") |
|
|
|
|
|
def tokenize_data(example): |
|
formatted_text = f"<s>[INST] {example['input']} [/INST] {example['output']}</s>" |
|
inputs = tokenizer(formatted_text, padding="max_length", truncation=True, max_length=4096, return_tensors="pt") |
|
inputs["labels"] = inputs["input_ids"].clone() |
|
return {k: v.squeeze(0) for k, v in inputs.items()} |
|
|
|
tokenized_dataset = dataset["train"].map(tokenize_data, batched=True, remove_columns=dataset["train"].column_names) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./fine_tuned_llama_healthcare", |
|
per_device_train_batch_size=4, |
|
gradient_accumulation_steps=8, |
|
eval_strategy="no", |
|
save_strategy="epoch", |
|
save_total_limit=2, |
|
num_train_epochs=5, |
|
learning_rate=2e-5, |
|
weight_decay=0.01, |
|
logging_dir="./logs", |
|
logging_steps=10, |
|
bf16=True, |
|
gradient_checkpointing=True, |
|
optim="adamw_torch", |
|
warmup_steps=100, |
|
) |
|
|
|
def custom_data_collator(features): |
|
return { |
|
"input_ids": torch.stack([f["input_ids"] for f in features]), |
|
"attention_mask": torch.stack([f["attention_mask"] for f in features]), |
|
"labels": torch.stack([f["labels"] for f in features]), |
|
} |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset, |
|
data_collator=custom_data_collator, |
|
) |
|
trainer.train() |
|
model.save_pretrained("./fine_tuned_llama_healthcare") |
|
tokenizer.save_pretrained("./fine_tuned_llama_healthcare") |
|
return "Training completed! Model saved to ./fine_tuned_llama_healthcare" |
|
|
|
except Exception as e: |
|
return f"Error: {str(e)}. Please check file format, dependencies, or the LLama token." |
|
|
|
|
|
with gr.Blocks(title="Healthcare Fraud Detection Fine-Tuning") as demo: |
|
gr.Markdown("# Fine-Tune LLaMA 2 for Healthcare Fraud Analysis") |
|
gr.Markdown("Upload PDFs (e.g., care logs, medication records) or a JSON file with training pairs.") |
|
file_input = gr.File(label="Upload Files (PDF/JSON)", file_count="multiple") |
|
train_button = gr.Button("Start Fine-Tuning") |
|
output = gr.Textbox(label="Training Status", lines=5) |
|
train_button.click(fn=train_ui, inputs=file_input, outputs=output) |
|
|
|
|
|
demo.launch() |