Cyril666's picture
First model version
4ea50ff
#include <vector>
#include "cpu/dcn_v2_im2col_cpu.h"
#include <iostream>
#include <ATen/ATen.h>
//#include <ATen/cuda/CUDAContext.h>
#include <TH/TH.h>
//#include <THC/THCAtomics.cuh>
//#include <THC/THCDeviceUtils.cuh>
//extern THCState *state;
// author: Charles Shang
// https://github.com/torch/cunn/blob/master/lib/THCUNN/generic/SpatialConvolutionMM.cu
// modified from the CUDA version for CPU use by Daniel K. Suhendro
// edit by: James Bockman and Matthew Howe
// modified for torch implementation to remove use of deprecated torch access to Blas
at::Tensor
dcn_v2_cpu_forward(const at::Tensor &input,
const at::Tensor &weight,
const at::Tensor &bias,
const at::Tensor &offset,
const at::Tensor &mask,
const int kernel_h,
const int kernel_w,
const int stride_h,
const int stride_w,
const int pad_h,
const int pad_w,
const int dilation_h,
const int dilation_w,
const int deformable_group)
{
// THCAssertSameGPU(THCudaTensor_checkGPU(state, 5, input, weight, bias, offset, mask));
/*AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
AT_ASSERTM(weight.is_cuda(), "weight must be a CUDA tensor");
AT_ASSERTM(bias.is_cuda(), "bias must be a CUDA tensor");
AT_ASSERTM(offset.is_cuda(), "offset must be a CUDA tensor");
AT_ASSERTM(mask.is_cuda(), "mask must be a CUDA tensor");*/
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_out = weight.size(0);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
// printf("Kernels: %d %d %d %d\n", kernel_h_, kernel_w_, kernel_w, kernel_h);
// printf("Channels: %d %d\n", channels, channels_kernel);
// printf("Channels: %d %d\n", channels_out, channels_kernel);
AT_ASSERTM(kernel_h_ == kernel_h && kernel_w_ == kernel_w,
"Input shape and kernel shape wont match: (%d x %d vs %d x %d).", kernel_h_, kernel_w, kernel_h_, kernel_w_);
AT_ASSERTM(channels == channels_kernel,
"Input shape and kernel channels wont match: (%d vs %d).", channels, channels_kernel);
const int height_out = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
// auto ones = at::ones({height_out, width_out}, input.options());
auto ones = at::ones({bias.sizes()[0], height_out, width_out}, input.options());
auto columns = at::empty({channels * kernel_h * kernel_w, 1 * height_out * width_out}, input.options());
auto output = at::zeros({batch, channels_out, height_out, width_out}, input.options());
using scalar_t = float;
for (int b = 0; b < batch; b++)
{
auto input_n = input.select(0, b);
auto offset_n = offset.select(0, b);
auto mask_n = mask.select(0, b);
auto output_n = output.select(0, b);
// std::cout << "output_n: " << output_n << "output.select(0,b): " << output.select(0,b) << "\n";
// Do Bias first:
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
// (N x 1) (1 x M)
// torch implementation
auto ones_T = at::transpose(ones.contiguous(), 2, 0);
ones_T = at::mul(ones_T, bias.contiguous());
ones_T = at::transpose(ones_T, 2, 0);
output_n = at::add(output_n, ones_T);
modulated_deformable_im2col_cpu(input_n.data_ptr<scalar_t>(),
offset_n.data_ptr<scalar_t>(),
mask_n.data_ptr<scalar_t>(),
1, channels, height, width,
height_out, width_out, kernel_h, kernel_w,
pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
deformable_group,
columns.data_ptr<scalar_t>());
//(k * m) x (m * n)
// Y = WC
// torch implementation
auto weight_flat = weight.view({channels_out, channels * kernel_h * kernel_w});
auto product = at::matmul(weight_flat, columns);
output.select(0, b) = at::add(output_n, product.view({channels_out, height_out, width_out}));
}
return output;
}
std::vector<at::Tensor> dcn_v2_cpu_backward(const at::Tensor &input,
const at::Tensor &weight,
const at::Tensor &bias,
const at::Tensor &offset,
const at::Tensor &mask,
const at::Tensor &grad_output,
int kernel_h, int kernel_w,
int stride_h, int stride_w,
int pad_h, int pad_w,
int dilation_h, int dilation_w,
int deformable_group)
{
THArgCheck(input.is_contiguous(), 1, "input tensor has to be contiguous");
THArgCheck(weight.is_contiguous(), 2, "weight tensor has to be contiguous");
/*AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
AT_ASSERTM(weight.is_cuda(), "weight must be a CUDA tensor");
AT_ASSERTM(bias.is_cuda(), "bias must be a CUDA tensor");
AT_ASSERTM(offset.is_cuda(), "offset must be a CUDA tensor");
AT_ASSERTM(mask.is_cuda(), "mask must be a CUDA tensor");*/
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_out = weight.size(0);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
AT_ASSERTM(kernel_h_ == kernel_h && kernel_w_ == kernel_w,
"Input shape and kernel shape wont match: (%d x %d vs %d x %d).", kernel_h_, kernel_w, kernel_h_, kernel_w_);
AT_ASSERTM(channels == channels_kernel,
"Input shape and kernel channels wont match: (%d vs %d).", channels, channels_kernel);
const int height_out = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
auto ones = at::ones({height_out, width_out}, input.options());
auto columns = at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out}, input.options());
auto output = at::empty({batch, channels_out, height_out, width_out}, input.options());
auto grad_input = at::zeros_like(input);
auto grad_weight = at::zeros_like(weight);
auto grad_bias = at::zeros_like(bias);
auto grad_offset = at::zeros_like(offset);
auto grad_mask = at::zeros_like(mask);
using scalar_t = float;
for (int b = 0; b < batch; b++)
{
auto input_n = input.select(0, b);
auto offset_n = offset.select(0, b);
auto mask_n = mask.select(0, b);
auto grad_output_n = grad_output.select(0, b);
auto grad_input_n = grad_input.select(0, b);
auto grad_offset_n = grad_offset.select(0, b);
auto grad_mask_n = grad_mask.select(0, b);
// Torch implementation
auto weight_flat = weight.view({channels_out, channels*kernel_h*kernel_w});
weight_flat = at::transpose(weight_flat, 1, 0);
auto grad_output_n_flat = grad_output_n.view({channels_out, height_out*width_out});
columns = at::matmul(weight_flat, grad_output_n_flat);
// gradient w.r.t. input coordinate data
modulated_deformable_col2im_coord_cpu(columns.data_ptr<scalar_t>(),
input_n.data_ptr<scalar_t>(),
offset_n.data_ptr<scalar_t>(),
mask_n.data_ptr<scalar_t>(),
1, channels, height, width,
height_out, width_out, kernel_h, kernel_w,
pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group,
grad_offset_n.data_ptr<scalar_t>(),
grad_mask_n.data_ptr<scalar_t>());
// gradient w.r.t. input data
modulated_deformable_col2im_cpu(columns.data_ptr<scalar_t>(),
offset_n.data_ptr<scalar_t>(),
mask_n.data_ptr<scalar_t>(),
1, channels, height, width,
height_out, width_out, kernel_h, kernel_w,
pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group,
grad_input_n.data_ptr<scalar_t>());
// gradient w.r.t. weight, dWeight should accumulate across the batch and group
modulated_deformable_im2col_cpu(input_n.data_ptr<scalar_t>(),
offset_n.data_ptr<scalar_t>(),
mask_n.data_ptr<scalar_t>(),
1, channels, height, width,
height_out, width_out, kernel_h, kernel_w,
pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group,
columns.data_ptr<scalar_t>());
// Torch implementation
auto product = at::matmul(grad_output_n_flat, at::transpose(columns, 1, 0));
grad_weight = at::add(grad_weight, product.view({channels_out, channels, kernel_h, kernel_w}));
// Torch implementation
auto ones_flat = ones.view({height_out*width_out});
product = at::matmul(grad_output_n_flat, ones_flat);
grad_bias = at::add(grad_bias, product);
}
return {
grad_input, grad_offset, grad_mask, grad_weight, grad_bias
};
}