Cyril666's picture
First model version
4ea50ff
"""
This file contains specific functions for computing losses of FCOS
file
"""
import torch
from torch.nn import functional as F
from torch import nn
from ..utils import concat_box_prediction_layers
from maskrcnn_benchmark.layers import IOULoss
from maskrcnn_benchmark.layers import SigmoidFocalLoss
from maskrcnn_benchmark.modeling.matcher import Matcher
from maskrcnn_benchmark.modeling.utils import cat
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
INF = 100000000
class FCOSLossComputation(object):
"""
This class computes the FCOS losses.
"""
def __init__(self, cfg):
self.cls_loss_func = SigmoidFocalLoss(
cfg.MODEL.FCOS.LOSS_GAMMA,
cfg.MODEL.FCOS.LOSS_ALPHA
)
# we make use of IOU Loss for bounding boxes regression,
# but we found that L1 in log scale can yield a similar performance
self.box_reg_loss_func = IOULoss()
self.centerness_loss_func = nn.BCEWithLogitsLoss()
# generate sizes of interest
soi = []
prev_size = -1
for s in cfg.MODEL.FCOS.SIZES_OF_INTEREST:
soi.append([prev_size, s])
prev_size = s
soi.append([prev_size, INF])
self.object_sizes_of_interest = soi
def prepare_targets(self, points, targets):
object_sizes_of_interest = self.object_sizes_of_interest
expanded_object_sizes_of_interest = []
for l, points_per_level in enumerate(points):
object_sizes_of_interest_per_level = \
points_per_level.new_tensor(object_sizes_of_interest[l])
expanded_object_sizes_of_interest.append(
object_sizes_of_interest_per_level[None].expand(len(points_per_level), -1)
)
expanded_object_sizes_of_interest = torch.cat(expanded_object_sizes_of_interest, dim=0)
num_points_per_level = [len(points_per_level) for points_per_level in points]
points_all_level = torch.cat(points, dim=0)
labels, reg_targets = self.compute_targets_for_locations(
points_all_level, targets, expanded_object_sizes_of_interest
)
for i in range(len(labels)):
labels[i] = torch.split(labels[i], num_points_per_level, dim=0)
reg_targets[i] = torch.split(reg_targets[i], num_points_per_level, dim=0)
labels_level_first = []
reg_targets_level_first = []
for level in range(len(points)):
labels_level_first.append(
torch.cat([labels_per_im[level] for labels_per_im in labels], dim=0)
)
reg_targets_level_first.append(
torch.cat([reg_targets_per_im[level] for reg_targets_per_im in reg_targets], dim=0)
)
return labels_level_first, reg_targets_level_first
def compute_targets_for_locations(self, locations, targets, object_sizes_of_interest):
labels = []
reg_targets = []
xs, ys = locations[:, 0], locations[:, 1]
for im_i in range(len(targets)):
targets_per_im = targets[im_i]
assert targets_per_im.mode == "xyxy"
bboxes = targets_per_im.bbox
labels_per_im = targets_per_im.get_field("labels")
area = targets_per_im.area()
l = xs[:, None] - bboxes[:, 0][None]
t = ys[:, None] - bboxes[:, 1][None]
r = bboxes[:, 2][None] - xs[:, None]
b = bboxes[:, 3][None] - ys[:, None]
reg_targets_per_im = torch.stack([l, t, r, b], dim=2)
is_in_boxes = reg_targets_per_im.min(dim=2)[0] > 0
max_reg_targets_per_im = reg_targets_per_im.max(dim=2)[0]
# limit the regression range for each location
is_cared_in_the_level = \
(max_reg_targets_per_im >= object_sizes_of_interest[:, [0]]) & \
(max_reg_targets_per_im <= object_sizes_of_interest[:, [1]])
locations_to_gt_area = area[None].repeat(len(locations), 1)
locations_to_gt_area[is_in_boxes == 0] = INF
locations_to_gt_area[is_cared_in_the_level == 0] = INF
# if there are still more than one objects for a location,
# we choose the one with minimal area
locations_to_min_aera, locations_to_gt_inds = locations_to_gt_area.min(dim=1)
reg_targets_per_im = reg_targets_per_im[range(len(locations)), locations_to_gt_inds]
labels_per_im = labels_per_im[locations_to_gt_inds]
labels_per_im[locations_to_min_aera == INF] = 0
labels.append(labels_per_im)
reg_targets.append(reg_targets_per_im)
return labels, reg_targets
def compute_centerness_targets(self, reg_targets):
left_right = reg_targets[:, [0, 2]]
top_bottom = reg_targets[:, [1, 3]]
centerness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * \
(top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
return torch.sqrt(centerness)
def __call__(self, locations, box_cls, box_regression, centerness, targets):
"""
Arguments:
locations (list[BoxList])
box_cls (list[Tensor])
box_regression (list[Tensor])
centerness (list[Tensor])
targets (list[BoxList])
Returns:
cls_loss (Tensor)
reg_loss (Tensor)
centerness_loss (Tensor)
"""
N = box_cls[0].size(0)
num_classes = box_cls[0].size(1)
labels, reg_targets = self.prepare_targets(locations, targets)
box_cls_flatten = []
box_regression_flatten = []
centerness_flatten = []
labels_flatten = []
reg_targets_flatten = []
for l in range(len(labels)):
box_cls_flatten.append(box_cls[l].permute(0, 2, 3, 1).reshape(-1, num_classes))
box_regression_flatten.append(box_regression[l].permute(0, 2, 3, 1).reshape(-1, 4))
labels_flatten.append(labels[l].reshape(-1))
reg_targets_flatten.append(reg_targets[l].reshape(-1, 4))
centerness_flatten.append(centerness[l].reshape(-1))
box_cls_flatten = torch.cat(box_cls_flatten, dim=0)
box_regression_flatten = torch.cat(box_regression_flatten, dim=0)
centerness_flatten = torch.cat(centerness_flatten, dim=0)
labels_flatten = torch.cat(labels_flatten, dim=0)
reg_targets_flatten = torch.cat(reg_targets_flatten, dim=0)
pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)
cls_loss = self.cls_loss_func(
box_cls_flatten,
labels_flatten.int()
) / (pos_inds.numel() + N) # add N to avoid dividing by a zero
box_regression_flatten = box_regression_flatten[pos_inds]
reg_targets_flatten = reg_targets_flatten[pos_inds]
centerness_flatten = centerness_flatten[pos_inds]
if pos_inds.numel() > 0:
centerness_targets = self.compute_centerness_targets(reg_targets_flatten)
reg_loss = self.box_reg_loss_func(
box_regression_flatten,
reg_targets_flatten,
centerness_targets
)
centerness_loss = self.centerness_loss_func(
centerness_flatten,
centerness_targets
)
else:
reg_loss = box_regression_flatten.sum()
centerness_loss = centerness_flatten.sum()
return cls_loss, reg_loss, centerness_loss
def make_fcos_loss_evaluator(cfg):
loss_evaluator = FCOSLossComputation(cfg)
return loss_evaluator