Spaces:
Build error
Build error
/*! | |
* Copyright (c) 2017 Microsoft | |
* Licensed under The MIT License [see LICENSE for details] | |
* \file deformable_psroi_pooling.cu | |
* \brief | |
* \author Yi Li, Guodong Zhang, Jifeng Dai | |
*/ | |
/***************** Adapted by Charles Shang *********************/ | |
const int CUDA_NUM_THREADS = 1024; | |
inline int GET_BLOCKS(const int N) | |
{ | |
return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS; | |
} | |
template <typename T> | |
__device__ T bilinear_interp( | |
const T *data, | |
const T x, | |
const T y, | |
const int width, | |
const int height) | |
{ | |
int x1 = floor(x); | |
int x2 = ceil(x); | |
int y1 = floor(y); | |
int y2 = ceil(y); | |
T dist_x = static_cast<T>(x - x1); | |
T dist_y = static_cast<T>(y - y1); | |
T value11 = data[y1 * width + x1]; | |
T value12 = data[y2 * width + x1]; | |
T value21 = data[y1 * width + x2]; | |
T value22 = data[y2 * width + x2]; | |
T value = (1 - dist_x) * (1 - dist_y) * value11 + | |
(1 - dist_x) * dist_y * value12 + | |
dist_x * (1 - dist_y) * value21 + | |
dist_x * dist_y * value22; | |
return value; | |
} | |
template <typename T> | |
__global__ void DeformablePSROIPoolForwardKernel( | |
const int count, | |
const T *bottom_data, | |
const T spatial_scale, | |
const int channels, | |
const int height, const int width, | |
const int pooled_height, const int pooled_width, | |
const T *bottom_rois, const T *bottom_trans, | |
const int no_trans, | |
const T trans_std, | |
const int sample_per_part, | |
const int output_dim, | |
const int group_size, | |
const int part_size, | |
const int num_classes, | |
const int channels_each_class, | |
T *top_data, | |
T *top_count) | |
{ | |
CUDA_KERNEL_LOOP(index, count) | |
{ | |
// The output is in order (n, ctop, ph, pw) | |
int pw = index % pooled_width; | |
int ph = (index / pooled_width) % pooled_height; | |
int ctop = (index / pooled_width / pooled_height) % output_dim; | |
int n = index / pooled_width / pooled_height / output_dim; | |
// [start, end) interval for spatial sampling | |
const T *offset_bottom_rois = bottom_rois + n * 5; | |
int roi_batch_ind = offset_bottom_rois[0]; | |
T roi_start_w = static_cast<T>(round(offset_bottom_rois[1])) * spatial_scale - 0.5; | |
T roi_start_h = static_cast<T>(round(offset_bottom_rois[2])) * spatial_scale - 0.5; | |
T roi_end_w = static_cast<T>(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5; | |
T roi_end_h = static_cast<T>(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5; | |
// Force too small ROIs to be 1x1 | |
T roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0 | |
T roi_height = max(roi_end_h - roi_start_h, 0.1); | |
// Compute w and h at bottom | |
T bin_size_h = roi_height / static_cast<T>(pooled_height); | |
T bin_size_w = roi_width / static_cast<T>(pooled_width); | |
T sub_bin_size_h = bin_size_h / static_cast<T>(sample_per_part); | |
T sub_bin_size_w = bin_size_w / static_cast<T>(sample_per_part); | |
int part_h = floor(static_cast<T>(ph) / pooled_height * part_size); | |
int part_w = floor(static_cast<T>(pw) / pooled_width * part_size); | |
int class_id = ctop / channels_each_class; | |
T trans_x = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * trans_std; | |
T trans_y = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * trans_std; | |
T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w; | |
wstart += trans_x * roi_width; | |
T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h; | |
hstart += trans_y * roi_height; | |
T sum = 0; | |
int count = 0; | |
int gw = floor(static_cast<T>(pw) * group_size / pooled_width); | |
int gh = floor(static_cast<T>(ph) * group_size / pooled_height); | |
gw = min(max(gw, 0), group_size - 1); | |
gh = min(max(gh, 0), group_size - 1); | |
const T *offset_bottom_data = bottom_data + (roi_batch_ind * channels) * height * width; | |
for (int ih = 0; ih < sample_per_part; ih++) | |
{ | |
for (int iw = 0; iw < sample_per_part; iw++) | |
{ | |
T w = wstart + iw * sub_bin_size_w; | |
T h = hstart + ih * sub_bin_size_h; | |
// bilinear interpolation | |
if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) | |
{ | |
continue; | |
} | |
w = min(max(w, 0.), width - 1.); | |
h = min(max(h, 0.), height - 1.); | |
int c = (ctop * group_size + gh) * group_size + gw; | |
T val = bilinear_interp(offset_bottom_data + c * height * width, w, h, width, height); | |
sum += val; | |
count++; | |
} | |
} | |
top_data[index] = count == 0 ? static_cast<T>(0) : sum / count; | |
top_count[index] = count; | |
} | |
} | |
template <typename T> | |
__global__ void DeformablePSROIPoolBackwardAccKernel( | |
const int count, | |
const T *top_diff, | |
const T *top_count, | |
const int num_rois, | |
const T spatial_scale, | |
const int channels, | |
const int height, const int width, | |
const int pooled_height, const int pooled_width, | |
const int output_dim, | |
T *bottom_data_diff, T *bottom_trans_diff, | |
const T *bottom_data, | |
const T *bottom_rois, | |
const T *bottom_trans, | |
const int no_trans, | |
const T trans_std, | |
const int sample_per_part, | |
const int group_size, | |
const int part_size, | |
const int num_classes, | |
const int channels_each_class) | |
{ | |
CUDA_KERNEL_LOOP(index, count) | |
{ | |
// The output is in order (n, ctop, ph, pw) | |
int pw = index % pooled_width; | |
int ph = (index / pooled_width) % pooled_height; | |
int ctop = (index / pooled_width / pooled_height) % output_dim; | |
int n = index / pooled_width / pooled_height / output_dim; | |
// [start, end) interval for spatial sampling | |
const T *offset_bottom_rois = bottom_rois + n * 5; | |
int roi_batch_ind = offset_bottom_rois[0]; | |
T roi_start_w = static_cast<T>(round(offset_bottom_rois[1])) * spatial_scale - 0.5; | |
T roi_start_h = static_cast<T>(round(offset_bottom_rois[2])) * spatial_scale - 0.5; | |
T roi_end_w = static_cast<T>(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5; | |
T roi_end_h = static_cast<T>(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5; | |
// Force too small ROIs to be 1x1 | |
T roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0 | |
T roi_height = max(roi_end_h - roi_start_h, 0.1); | |
// Compute w and h at bottom | |
T bin_size_h = roi_height / static_cast<T>(pooled_height); | |
T bin_size_w = roi_width / static_cast<T>(pooled_width); | |
T sub_bin_size_h = bin_size_h / static_cast<T>(sample_per_part); | |
T sub_bin_size_w = bin_size_w / static_cast<T>(sample_per_part); | |
int part_h = floor(static_cast<T>(ph) / pooled_height * part_size); | |
int part_w = floor(static_cast<T>(pw) / pooled_width * part_size); | |
int class_id = ctop / channels_each_class; | |
T trans_x = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * trans_std; | |
T trans_y = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * trans_std; | |
T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w; | |
wstart += trans_x * roi_width; | |
T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h; | |
hstart += trans_y * roi_height; | |
if (top_count[index] <= 0) | |
{ | |
continue; | |
} | |
T diff_val = top_diff[index] / top_count[index]; | |
const T *offset_bottom_data = bottom_data + roi_batch_ind * channels * height * width; | |
T *offset_bottom_data_diff = bottom_data_diff + roi_batch_ind * channels * height * width; | |
int gw = floor(static_cast<T>(pw) * group_size / pooled_width); | |
int gh = floor(static_cast<T>(ph) * group_size / pooled_height); | |
gw = min(max(gw, 0), group_size - 1); | |
gh = min(max(gh, 0), group_size - 1); | |
for (int ih = 0; ih < sample_per_part; ih++) | |
{ | |
for (int iw = 0; iw < sample_per_part; iw++) | |
{ | |
T w = wstart + iw * sub_bin_size_w; | |
T h = hstart + ih * sub_bin_size_h; | |
// bilinear interpolation | |
if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) | |
{ | |
continue; | |
} | |
w = min(max(w, 0.), width - 1.); | |
h = min(max(h, 0.), height - 1.); | |
int c = (ctop * group_size + gh) * group_size + gw; | |
// backward on feature | |
int x0 = floor(w); | |
int x1 = ceil(w); | |
int y0 = floor(h); | |
int y1 = ceil(h); | |
T dist_x = w - x0, dist_y = h - y0; | |
T q00 = (1 - dist_x) * (1 - dist_y); | |
T q01 = (1 - dist_x) * dist_y; | |
T q10 = dist_x * (1 - dist_y); | |
T q11 = dist_x * dist_y; | |
int bottom_index_base = c * height * width; | |
atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x0, q00 * diff_val); | |
atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x0, q01 * diff_val); | |
atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x1, q10 * diff_val); | |
atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x1, q11 * diff_val); | |
if (no_trans) | |
{ | |
continue; | |
} | |
T U00 = offset_bottom_data[bottom_index_base + y0 * width + x0]; | |
T U01 = offset_bottom_data[bottom_index_base + y1 * width + x0]; | |
T U10 = offset_bottom_data[bottom_index_base + y0 * width + x1]; | |
T U11 = offset_bottom_data[bottom_index_base + y1 * width + x1]; | |
T diff_x = (U11 * dist_y + U10 * (1 - dist_y) - U01 * dist_y - U00 * (1 - dist_y)) * trans_std * diff_val; | |
diff_x *= roi_width; | |
T diff_y = (U11 * dist_x + U01 * (1 - dist_x) - U10 * dist_x - U00 * (1 - dist_x)) * trans_std * diff_val; | |
diff_y *= roi_height; | |
atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w, diff_x); | |
atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w, diff_y); | |
} | |
} | |
} | |
} | |
std::tuple<at::Tensor, at::Tensor> | |
dcn_v2_psroi_pooling_cuda_forward(const at::Tensor &input, | |
const at::Tensor &bbox, | |
const at::Tensor &trans, | |
const int no_trans, | |
const float spatial_scale, | |
const int output_dim, | |
const int group_size, | |
const int pooled_size, | |
const int part_size, | |
const int sample_per_part, | |
const float trans_std) | |
{ | |
AT_ASSERTM(input.type().is_cuda(), "input must be a CUDA tensor"); | |
AT_ASSERTM(bbox.type().is_cuda(), "rois must be a CUDA tensor"); | |
AT_ASSERTM(trans.type().is_cuda(), "trans must be a CUDA tensor"); | |
const int batch = input.size(0); | |
const int channels = input.size(1); | |
const int height = input.size(2); | |
const int width = input.size(3); | |
const int channels_trans = no_trans ? 2 : trans.size(1); | |
const int num_bbox = bbox.size(0); | |
AT_ASSERTM(channels == output_dim, "input channels and output channels must equal"); | |
auto pooled_height = pooled_size; | |
auto pooled_width = pooled_size; | |
auto out = at::empty({num_bbox, output_dim, pooled_height, pooled_width}, input.options()); | |
long out_size = num_bbox * output_dim * pooled_height * pooled_width; | |
auto top_count = at::zeros({num_bbox, output_dim, pooled_height, pooled_width}, input.options()); | |
const int num_classes = no_trans ? 1 : channels_trans / 2; | |
const int channels_each_class = no_trans ? output_dim : output_dim / num_classes; | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
if (out.numel() == 0) | |
{ | |
THCudaCheck(cudaGetLastError()); | |
return std::make_tuple(out, top_count); | |
} | |
dim3 grid(std::min(THCCeilDiv(out_size, 512L), 4096L)); | |
dim3 block(512); | |
AT_DISPATCH_FLOATING_TYPES(input.type(), "dcn_v2_psroi_pooling_cuda_forward", [&] { | |
DeformablePSROIPoolForwardKernel<scalar_t><<<grid, block, 0, stream>>>( | |
out_size, | |
input.contiguous().data<scalar_t>(), | |
spatial_scale, | |
channels, | |
height, width, | |
pooled_height, | |
pooled_width, | |
bbox.contiguous().data<scalar_t>(), | |
trans.contiguous().data<scalar_t>(), | |
no_trans, | |
trans_std, | |
sample_per_part, | |
output_dim, | |
group_size, | |
part_size, | |
num_classes, | |
channels_each_class, | |
out.data<scalar_t>(), | |
top_count.data<scalar_t>()); | |
}); | |
THCudaCheck(cudaGetLastError()); | |
return std::make_tuple(out, top_count); | |
} | |
std::tuple<at::Tensor, at::Tensor> | |
dcn_v2_psroi_pooling_cuda_backward(const at::Tensor &out_grad, | |
const at::Tensor &input, | |
const at::Tensor &bbox, | |
const at::Tensor &trans, | |
const at::Tensor &top_count, | |
const int no_trans, | |
const float spatial_scale, | |
const int output_dim, | |
const int group_size, | |
const int pooled_size, | |
const int part_size, | |
const int sample_per_part, | |
const float trans_std) | |
{ | |
AT_ASSERTM(out_grad.type().is_cuda(), "out_grad must be a CUDA tensor"); | |
AT_ASSERTM(input.type().is_cuda(), "input must be a CUDA tensor"); | |
AT_ASSERTM(bbox.type().is_cuda(), "bbox must be a CUDA tensor"); | |
AT_ASSERTM(trans.type().is_cuda(), "trans must be a CUDA tensor"); | |
AT_ASSERTM(top_count.type().is_cuda(), "top_count must be a CUDA tensor"); | |
const int batch = input.size(0); | |
const int channels = input.size(1); | |
const int height = input.size(2); | |
const int width = input.size(3); | |
const int channels_trans = no_trans ? 2 : trans.size(1); | |
const int num_bbox = bbox.size(0); | |
AT_ASSERTM(channels == output_dim, "input channels and output channels must equal"); | |
auto pooled_height = pooled_size; | |
auto pooled_width = pooled_size; | |
long out_size = num_bbox * output_dim * pooled_height * pooled_width; | |
const int num_classes = no_trans ? 1 : channels_trans / 2; | |
const int channels_each_class = no_trans ? output_dim : output_dim / num_classes; | |
auto input_grad = at::zeros({batch, channels, height, width}, out_grad.options()); | |
auto trans_grad = at::zeros_like(trans); | |
if (input_grad.numel() == 0) | |
{ | |
THCudaCheck(cudaGetLastError()); | |
return std::make_tuple(input_grad, trans_grad); | |
} | |
dim3 grid(std::min(THCCeilDiv(out_size, 512L), 4096L)); | |
dim3 block(512); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
AT_DISPATCH_FLOATING_TYPES(out_grad.type(), "dcn_v2_psroi_pooling_cuda_backward", [&] { | |
DeformablePSROIPoolBackwardAccKernel<scalar_t><<<grid, block, 0, stream>>>( | |
out_size, | |
out_grad.contiguous().data<scalar_t>(), | |
top_count.contiguous().data<scalar_t>(), | |
num_bbox, | |
spatial_scale, | |
channels, | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
output_dim, | |
input_grad.contiguous().data<scalar_t>(), | |
trans_grad.contiguous().data<scalar_t>(), | |
input.contiguous().data<scalar_t>(), | |
bbox.contiguous().data<scalar_t>(), | |
trans.contiguous().data<scalar_t>(), | |
no_trans, | |
trans_std, | |
sample_per_part, | |
group_size, | |
part_size, | |
num_classes, | |
channels_each_class); | |
}); | |
THCudaCheck(cudaGetLastError()); | |
return std::make_tuple(input_grad, trans_grad); | |
} |