Spaces:
Build error
Build error
'''Some helper functions for PyTorch, including: | |
- get_mean_and_std: calculate the mean and std value of dataset. | |
- msr_init: net parameter initialization. | |
- progress_bar: progress bar mimic xlua.progress. | |
''' | |
import errno | |
import os | |
import sys | |
import time | |
import math | |
import torch.nn as nn | |
import torch.nn.init as init | |
from torch.autograd import Variable | |
__all__ = ['get_mean_and_std', 'init_params', 'mkdir_p', 'AverageMeter'] | |
def get_mean_and_std(dataset): | |
'''Compute the mean and std value of dataset.''' | |
dataloader = trainloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2) | |
mean = torch.zeros(3) | |
std = torch.zeros(3) | |
print('==> Computing mean and std..') | |
for inputs, targets in dataloader: | |
for i in range(3): | |
mean[i] += inputs[:,i,:,:].mean() | |
std[i] += inputs[:,i,:,:].std() | |
mean.div_(len(dataset)) | |
std.div_(len(dataset)) | |
return mean, std | |
def init_params(net): | |
'''Init layer parameters.''' | |
for m in net.modules(): | |
if isinstance(m, nn.Conv2d): | |
init.kaiming_normal(m.weight, mode='fan_out') | |
if m.bias: | |
init.constant(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
init.constant(m.weight, 1) | |
init.constant(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
init.normal(m.weight, std=1e-3) | |
if m.bias: | |
init.constant(m.bias, 0) | |
def mkdir_p(path): | |
'''make dir if not exist''' | |
try: | |
os.makedirs(path) | |
except OSError as exc: # Python >2.5 | |
if exc.errno == errno.EEXIST and os.path.isdir(path): | |
pass | |
else: | |
raise | |
class AverageMeter(object): | |
"""Computes and stores the average and current value""" | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.val = 0 | |
self.avg = 0 | |
self.sum = 0 | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count |