Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import os | |
# from functools import partial | |
# from clip_fiqa.inference import get_model, compute_quality | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
from tqdm.auto import tqdm | |
# from torchmetrics.multimodal import CLIPImageQualityAssessment | |
import random | |
# from torch.nn.functional import cosine_similarity | |
import pyiqa | |
from util.img_utils import clear_color | |
from .posterior_mean_variance import get_mean_processor, get_var_processor | |
def set_seed(seed): | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
# torch.backends.cudnn.deterministic = True | |
# torch.backends.cudnn.benchmark = False | |
__SAMPLER__ = {} | |
def register_sampler(name: str): | |
def wrapper(cls): | |
if __SAMPLER__.get(name, None): | |
raise NameError(f"Name {name} is already registered!") | |
__SAMPLER__[name] = cls | |
return cls | |
return wrapper | |
def get_sampler(name: str): | |
if __SAMPLER__.get(name, None) is None: | |
raise NameError(f"Name {name} is not defined!") | |
return __SAMPLER__[name] | |
def create_sampler(sampler, | |
steps, | |
noise_schedule, | |
model_mean_type, | |
model_var_type, | |
dynamic_threshold, | |
clip_denoised, | |
rescale_timesteps, | |
timestep_respacing=""): | |
sampler = get_sampler(name=sampler) | |
betas = get_named_beta_schedule(noise_schedule, steps) | |
if not timestep_respacing: | |
timestep_respacing = [steps] | |
return sampler(use_timesteps=space_timesteps(steps, timestep_respacing), | |
betas=betas, | |
model_mean_type=model_mean_type, | |
model_var_type=model_var_type, | |
dynamic_threshold=dynamic_threshold, | |
clip_denoised=clip_denoised, | |
rescale_timesteps=rescale_timesteps) | |
def compute_psnr(img1, img2): | |
""" | |
Computes the Peak Signal-to-Noise Ratio (PSNR) between two images. | |
The images should have pixel values in the range [-1, 1]. | |
Args: | |
img1 (torch.Tensor): The first image tensor (e.g., reference image). | |
Shape: (N, C, H, W) or (C, H, W). | |
img2 (torch.Tensor): The second image tensor (e.g., generated image). | |
Shape: same as img1. | |
Returns: | |
psnr (float): The computed PSNR value in decibels (dB). | |
""" | |
# Ensure the input tensors are in the same shape | |
assert img1.shape == img2.shape, "Input images must have the same shape" | |
# Compute Mean Squared Error (MSE) | |
mse = torch.mean((img1 - img2) ** 2) | |
# Avoid division by zero in case of identical images | |
if mse == 0: | |
return float('inf') | |
# Maximum possible pixel value difference in the range [-1, 1] is 2 | |
max_pixel_value = 2.0 | |
# Compute PSNR | |
psnr = 20 * torch.log10(max_pixel_value / torch.sqrt(mse)) | |
return psnr.item() | |
class GaussianDiffusion: | |
def __init__(self, | |
betas, | |
model_mean_type, | |
model_var_type, | |
dynamic_threshold, | |
clip_denoised, | |
rescale_timesteps | |
): | |
# use float64 for accuracy. | |
betas = np.array(betas, dtype=np.float64) | |
self.betas = betas | |
assert self.betas.ndim == 1, "betas must be 1-D" | |
assert (0 < self.betas).all() and (self.betas <=1).all(), "betas must be in (0..1]" | |
self.num_timesteps = int(self.betas.shape[0]) | |
self.rescale_timesteps = rescale_timesteps | |
alphas = 1.0 - self.betas | |
self.alphas = alphas | |
self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) | |
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
self.posterior_variance = ( | |
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
) | |
# log calculation clipped because the posterior variance is 0 at the | |
# beginning of the diffusion chain. | |
self.posterior_log_variance_clipped = np.log( | |
np.append(self.posterior_variance[1], self.posterior_variance[1:]) | |
) | |
self.posterior_mean_coef1 = ( | |
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
) | |
self.posterior_mean_coef2 = ( | |
(1.0 - self.alphas_cumprod_prev) | |
* np.sqrt(alphas) | |
/ (1.0 - self.alphas_cumprod) | |
) | |
self.mean_processor = get_mean_processor(model_mean_type, | |
betas=betas, | |
dynamic_threshold=dynamic_threshold, | |
clip_denoised=clip_denoised) | |
self.var_processor = get_var_processor(model_var_type, | |
betas=betas) | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = extract_and_expand(self.sqrt_alphas_cumprod, t, x_start) * x_start | |
variance = extract_and_expand(1.0 - self.alphas_cumprod, t, x_start) | |
log_variance = extract_and_expand(self.log_one_minus_alphas_cumprod, t, x_start) | |
return mean, variance, log_variance | |
def q_sample(self, x_start, t): | |
""" | |
Diffuse the data for a given number of diffusion steps. | |
In other words, sample from q(x_t | x_0). | |
:param x_start: the initial data batch. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:param noise: if specified, the split-out normal noise. | |
:return: A noisy version of x_start. | |
""" | |
noise = torch.randn_like(x_start) | |
assert noise.shape == x_start.shape | |
coef1 = extract_and_expand(self.sqrt_alphas_cumprod, t, x_start) | |
coef2 = extract_and_expand(self.sqrt_one_minus_alphas_cumprod, t, x_start) | |
return coef1 * x_start + coef2 * noise | |
def q_posterior_mean_variance(self, x_start, x_t, t): | |
""" | |
Compute the mean and variance of the diffusion posterior: | |
q(x_{t-1} | x_t, x_0) | |
""" | |
assert x_start.shape == x_t.shape | |
coef1 = extract_and_expand(self.posterior_mean_coef1, t, x_start) | |
coef2 = extract_and_expand(self.posterior_mean_coef2, t, x_t) | |
posterior_mean = coef1 * x_start + coef2 * x_t | |
posterior_variance = extract_and_expand(self.posterior_variance, t, x_t) | |
posterior_log_variance_clipped = extract_and_expand(self.posterior_log_variance_clipped, t, x_t) | |
assert ( | |
posterior_mean.shape[0] | |
== posterior_variance.shape[0] | |
== posterior_log_variance_clipped.shape[0] | |
== x_start.shape[0] | |
) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
torch.no_grad() | |
def p_sample_loop_compression(self, | |
model, | |
x_start, | |
ref_img, | |
record, | |
save_root, | |
num_opt_noises, | |
num_random_noises, | |
loss_type, | |
decode_residual_gap, | |
fname, | |
eta, | |
num_best_opt_noises, | |
num_pursuit_noises, | |
num_pursuit_coef_bits, | |
random_opt_mse_noises): | |
""" | |
The function used for sampling from noise. | |
""" | |
assert num_best_opt_noises + num_random_noises > 0 | |
# loss_fn_vgg = lpips.LPIPS(net='vgg').cuda() | |
# loss_fn_alex = lpips.LPIPS(net='alex').cuda() | |
set_seed(100000) | |
device = x_start.device | |
img = torch.randn(1 + random_opt_mse_noises, *x_start.shape[1:], device=device) | |
plt.imsave(os.path.join(save_root, f"progress/img_to_compress.png"), clear_color(ref_img)) | |
best_indices_list = [] | |
x_hat_0_list = [] | |
pbar = tqdm(list(range(self.num_timesteps))[::-1]) | |
num_noises_total = 0 | |
num_steps_total = 0 | |
for idx in pbar: | |
set_seed(idx) | |
time = torch.tensor([idx] * img.shape[0], device=device) | |
if len(x_hat_0_list) >= 2: | |
x_hat_0_list = x_hat_0_list[-decode_residual_gap:] | |
x_hat_0_list_tensor = torch.stack(x_hat_0_list, dim=0) | |
# TODO: think about different probs schedulings | |
probs = torch.linspace(0, 1, len(x_hat_0_list) - 1, device=device) | |
probs /= torch.sum(probs) | |
residual = torch.sum(probs.view(-1, 1) * (x_hat_0_list_tensor[1:] - x_hat_0_list_tensor[:-1]).view(len(x_hat_0_list) - 1, -1), dim=0) | |
new_noise = torch.randn(num_opt_noises, *img.shape[1:], device=device) | |
similarity = torch.matmul(new_noise.view(num_opt_noises, -1), | |
residual.view(-1, 1)).squeeze(1) | |
sorted_similarity, sorted_indices = torch.sort(similarity, descending=False) | |
noise = new_noise[sorted_indices][:num_best_opt_noises] | |
if num_random_noises > 0: | |
noise = torch.cat((noise, torch.randn(num_random_noises, *img.shape[1:], device=device)), dim=0) | |
else: | |
noise = torch.randn(num_best_opt_noises + num_random_noises, *img.shape[1:], device=device) | |
num_noises_total += noise.shape[0] | |
num_steps_total += 1 | |
# perceptual_loss_weight = (1 - (idx / len(pbar))) * lpips_loss_mult | |
out = self.p_sample(x=img, | |
t=time, | |
model=model, | |
noise=noise, | |
ref=ref_img, | |
loss_type=loss_type, | |
random_opt_mse_noises=random_opt_mse_noises, | |
eta=eta, | |
num_pursuit_noises=num_pursuit_noises, | |
num_pursuit_coef_bits=num_pursuit_coef_bits) | |
best_idx = out['best_idx'] | |
best_indices_list.append(best_idx.cpu().numpy()) | |
# print(best_indices_list, '\n\n', flush=True) | |
img = out['sample'] | |
x_0_hat = out['pred_xstart'] | |
x_hat_0_list.append(x_0_hat[0].unsqueeze(0)) | |
# chosen_noises_list.append(noise[best_idx]) | |
# pbar.set_postfix({'distance': out['mse']}, refresh=False) | |
if record: | |
if idx % 50 == 0: | |
plt.imsave(os.path.join(save_root, f"progress/x_0_hat_{str(idx).zfill(4)}.png"), clear_color(x_0_hat[0].unsqueeze(0).clip(-1, 1))) | |
plt.imsave(os.path.join(save_root, f"progress/x_t_{str(idx).zfill(4)}.png"), clear_color(img[0].unsqueeze(0).clip(-1, 1))) | |
plt.imsave(os.path.join(save_root, f"progress/noise_t_{str(idx).zfill(4)}.png"), clear_color(noise[0].unsqueeze(0).clip(-1, 1))) | |
plt.imsave(os.path.join(save_root, f"progress/err_t_{str(idx).zfill(4)}.png"), clear_color((ref_img - x_0_hat)[0].unsqueeze(0))) | |
del noise | |
# lpips_vgg = loss_fn_vgg(img, ref_img).squeeze().item() | |
# lpips_alex = loss_fn_alex(img, ref_img).squeeze().item() | |
plt.imsave(os.path.join(save_root, | |
f"progress/x_0_hat_final_psnr={compute_psnr(img[0].unsqueeze(0), ref_img)}_bpp={np.log2(num_noises_total / num_steps_total)}.png"), | |
clear_color(img[0].unsqueeze(0))) | |
indices_save_folder = os.path.join(save_root, 'best_indices') | |
os.makedirs(indices_save_folder, exist_ok=True) | |
np.save(os.path.join(indices_save_folder, os.path.splitext(os.path.basename(fname))[0] + '.bestindices'), np.array(best_indices_list)) | |
return img | |
def p_sample_loop_blind_restoration(self, | |
model, | |
x_start, | |
mmse_img, | |
num_opt_noises, | |
iqa_metric, | |
iqa_coef, | |
eta, | |
loaded_indices): | |
assert iqa_metric == 'niqe' or iqa_metric == 'clipiqa+' or iqa_metric == 'topiq_nr-face' | |
iqa = pyiqa.create_metric(iqa_metric, device=x_start.device) | |
device = x_start.device | |
set_seed(100000) | |
img = torch.randn(2, *x_start.shape[1:], device=device) | |
pbar = tqdm(list(range(self.num_timesteps))[::-1]) | |
next_idx = np.array([0, 1]) | |
if loaded_indices is not None: | |
indices = loaded_indices | |
loaded_indices = torch.cat((loaded_indices, torch.tensor([0], device=device, dtype=loaded_indices.dtype)), dim=0) | |
else: | |
indices = [] | |
for i, idx in enumerate(pbar): | |
set_seed(idx) | |
noise = torch.randn(num_opt_noises, *img.shape[1:], device=device) | |
if loaded_indices is None: | |
time = torch.tensor([idx] * img.shape[0], device=device) | |
out = self.p_sample(x=img, | |
t=time, | |
model=model, | |
noise=noise, | |
ref=mmse_img, | |
loss_type='dot_prod', | |
optimize_iqa=True, | |
eta=eta, | |
iqa=iqa, | |
iqa_coef=iqa_coef) | |
img = out['sample'] | |
best_perceptual_idx_cur = out['best_perceptual_idx'] | |
indices.append(next_idx[best_perceptual_idx_cur]) | |
next_idx = out['best_idx'] | |
else: | |
time = torch.tensor([idx], device=device) | |
if i == 0: | |
img = img[loaded_indices[0]].unsqueeze(0) | |
out = self.p_sample(x=img, | |
t=time, | |
model=model, | |
noise=noise[loaded_indices[i+1]].unsqueeze(0), | |
ref=img, | |
loss_type='dot_prod', | |
optimize_iqa=False, | |
eta=eta, | |
iqa='niqe', | |
iqa_coef=0.0) | |
img = out['sample'] | |
if type(indices) is list: | |
indices = torch.tensor(indices).flatten() | |
return img[0].unsqueeze(0), indices | |
def p_sample_loop_linear_restoration(self, | |
model, | |
x_start, | |
ref_img, | |
linear_operator, | |
y_n, | |
num_pursuit_noises, | |
num_pursuit_coef_bits, | |
record, | |
save_root, | |
num_opt_noises, | |
fname, | |
eta): | |
""" | |
The function used for sampling from noise. | |
""" | |
set_seed(100000) | |
device = x_start.device | |
img = torch.randn(1, *x_start.shape[1:], device=device) | |
pbar = tqdm(list(range(self.num_timesteps))[::-1]) | |
for idx in pbar: | |
set_seed(idx) | |
time = torch.tensor([idx] * img.shape[0], device=device) | |
noise = torch.randn(num_opt_noises, *img.shape[1:], device=device) | |
# perceptual_loss_weight = (1 - (idx / len(pbar))) * lpips_loss_mult | |
out = self.p_sample(x=img, | |
t=time, | |
model=model, | |
noise=noise, | |
ref=ref_img, | |
loss_type='mse', | |
eta=eta, | |
y_n=y_n, | |
linear_operator=linear_operator, | |
num_pursuit_noises=num_pursuit_noises, | |
num_pursuit_coef_bits=num_pursuit_coef_bits, | |
optimize_iqa=False, | |
iqa=None, | |
iqa_coef=None) | |
x_0_hat = out['pred_xstart'] | |
img = out['sample'] | |
# loss = (((x_0_hat - mmse_img) ** 2).mean() | |
# - perceptual_quality_coef * clip_iqa((x_0_hat * 0.5 + 0.5).clip(0, 1))) | |
# pbar.set_postfix({'perceptual_quality': loss[best_perceptual_idx].item()}, refresh=False) | |
if record: | |
if idx % 50 == 0: | |
plt.imsave(os.path.join(save_root, f"progress/x_0_hat_{str(idx).zfill(4)}.png"), clear_color(x_0_hat[0].unsqueeze(0).clip(-1, 1))) | |
plt.imsave(os.path.join(save_root, f"progress/x_t_{str(idx).zfill(4)}.png"), clear_color(img[0].unsqueeze(0).clip(-1, 1))) | |
# plt.imsave(os.path.join(save_root, | |
# f"progress/x_0_hat_final_lpips-vgg={lpips_vgg:.4f}_lpips-alex" | |
# f"={lpips_alex:.4f}_psnr={compute_psnr(img[0].unsqueeze(0), ref_img)}_bpp={np.log2(num_noises_total / num_steps_total)}.png"), | |
# clear_color(img[0].unsqueeze(0))) | |
# indices_save_folder = os.path.join(save_root, 'best_indices') | |
# os.makedirs(indices_save_folder, exist_ok=True) | |
# np.save(os.path.join(indices_save_folder, os.path.splitext(os.path.basename(fname))[0] + '.bestindices'), np.array(best_indices_list)) | |
return img | |
def p_sample(self, model, x, t, noise, ref, loss_type, eta=None): | |
raise NotImplementedError | |
def p_mean_variance(self, model, x, t): | |
model_output = model(x, self._scale_timesteps(t)) | |
# In the case of "learned" variance, model will give twice channels. | |
if model_output.shape[1] == 2 * x.shape[1]: | |
model_output, model_var_values = torch.split(model_output, x.shape[1], dim=1) | |
else: | |
# The name of variable is wrong. | |
# This will just provide shape information, and | |
# will not be used for calculating something important in variance. | |
model_var_values = model_output | |
model_mean, pred_xstart = self.mean_processor.get_mean_and_xstart(x, t, model_output) | |
model_variance, model_log_variance = self.var_processor.get_variance(model_var_values, t) | |
assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape | |
return {'mean': model_mean, | |
'variance': model_variance, | |
'log_variance': model_log_variance, | |
'pred_xstart': pred_xstart} | |
def _scale_timesteps(self, t): | |
if self.rescale_timesteps: | |
return t.float() * (1000.0 / self.num_timesteps) | |
return t | |
def space_timesteps(num_timesteps, section_counts): | |
""" | |
Create a list of timesteps to use from an original diffusion process, | |
given the number of timesteps we want to take from equally-sized portions | |
of the original process. | |
For example, if there's 300 timesteps and the section counts are [10,15,20] | |
then the first 100 timesteps are strided to be 10 timesteps, the second 100 | |
are strided to be 15 timesteps, and the final 100 are strided to be 20. | |
If the stride is a string starting with "ddim", then the fixed striding | |
from the DDIM paper is used, and only one section is allowed. | |
:param num_timesteps: the number of diffusion steps in the original | |
process to divide up. | |
:param section_counts: either a list of numbers, or a string containing | |
comma-separated numbers, indicating the step count | |
per section. As a special case, use "ddimN" where N | |
is a number of steps to use the striding from the | |
DDIM paper. | |
:return: a set of diffusion steps from the original process to use. | |
""" | |
if isinstance(section_counts, str): | |
if section_counts.startswith("ddim"): | |
desired_count = int(section_counts[len("ddim") :]) | |
for i in range(1, num_timesteps): | |
if len(range(0, num_timesteps, i)) == desired_count: | |
return set(range(0, num_timesteps, i)) | |
raise ValueError( | |
f"cannot create exactly {num_timesteps} steps with an integer stride" | |
) | |
section_counts = [int(x) for x in section_counts.split(",")] | |
elif isinstance(section_counts, int): | |
section_counts = [section_counts] | |
size_per = num_timesteps // len(section_counts) | |
extra = num_timesteps % len(section_counts) | |
start_idx = 0 | |
all_steps = [] | |
for i, section_count in enumerate(section_counts): | |
size = size_per + (1 if i < extra else 0) | |
if size < section_count: | |
raise ValueError( | |
f"cannot divide section of {size} steps into {section_count}" | |
) | |
if section_count <= 1: | |
frac_stride = 1 | |
else: | |
frac_stride = (size - 1) / (section_count - 1) | |
cur_idx = 0.0 | |
taken_steps = [] | |
for _ in range(section_count): | |
taken_steps.append(start_idx + round(cur_idx)) | |
cur_idx += frac_stride | |
all_steps += taken_steps | |
start_idx += size | |
return set(all_steps) | |
class SpacedDiffusion(GaussianDiffusion): | |
""" | |
A diffusion process which can skip steps in a base diffusion process. | |
:param use_timesteps: a collection (sequence or set) of timesteps from the | |
original diffusion process to retain. | |
:param kwargs: the kwargs to create the base diffusion process. | |
""" | |
def __init__(self, use_timesteps, **kwargs): | |
self.use_timesteps = set(use_timesteps) | |
self.timestep_map = [] | |
self.original_num_steps = len(kwargs["betas"]) | |
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa | |
last_alpha_cumprod = 1.0 | |
new_betas = [] | |
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): | |
if i in self.use_timesteps: | |
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) | |
last_alpha_cumprod = alpha_cumprod | |
self.timestep_map.append(i) | |
kwargs["betas"] = np.array(new_betas) | |
super().__init__(**kwargs) | |
def p_mean_variance( | |
self, model, *args, **kwargs | |
): # pylint: disable=signature-differs | |
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) | |
def training_losses( | |
self, model, *args, **kwargs | |
): # pylint: disable=signature-differs | |
return super().training_losses(self._wrap_model(model), *args, **kwargs) | |
def condition_mean(self, cond_fn, *args, **kwargs): | |
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) | |
def condition_score(self, cond_fn, *args, **kwargs): | |
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) | |
def _wrap_model(self, model): | |
if isinstance(model, _WrappedModel): | |
return model | |
return _WrappedModel( | |
model, self.timestep_map, self.rescale_timesteps, self.original_num_steps | |
) | |
def _scale_timesteps(self, t): | |
# Scaling is done by the wrapped model. | |
return t | |
class _WrappedModel: | |
def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): | |
self.model = model | |
self.timestep_map = timestep_map | |
self.rescale_timesteps = rescale_timesteps | |
self.original_num_steps = original_num_steps | |
def __call__(self, x, ts, **kwargs): | |
map_tensor = torch.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) | |
new_ts = map_tensor[ts] | |
if self.rescale_timesteps: | |
new_ts = new_ts.float() * (1000.0 / self.original_num_steps) | |
return self.model(x, new_ts, **kwargs) | |
class DDPM(SpacedDiffusion): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def p_sample(self, model, x, t, noise, ref, perceptual_loss_weight, loss_type='mse', eta=None): | |
out = self.p_mean_variance(model, x, t) | |
pred_xstart = out['pred_xstart'] | |
# if loss_type == 'mse': | |
# loss = - ((pred_xstart + noise - ref).view(noise.shape[0], -1) ** 2).mean(1) | |
# elif loss_type == 'mse_alpha': | |
# loss = - ((pred_xstart + torch.exp(0.5 * out['log_variance']) * noise - ref).view(noise.shape[0], -1) ** 2).mean(1) | |
if loss_type == 'dot_prod': | |
loss = torch.matmul(noise.view(noise.shape[0], -1), (ref - pred_xstart).view(pred_xstart.shape[0], -1).transpose(0, 1)) | |
elif loss_type == 'mse': | |
#TODO: this is what we are doing! the dot product is an approximation of it! | |
sqrt_recip_alphas_cumprod = extract_and_expand(self.sqrt_recip_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), noise) | |
loss = - ((pred_xstart + sqrt_recip_alphas_cumprod * torch.exp(0.5 * out['log_variance']) * noise - ref).view(noise.shape[0], -1) ** 2).mean(1) | |
elif loss_type == 'l1': | |
sqrt_recip_alphas_cumprod = extract_and_expand(self.sqrt_recip_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), noise) | |
loss = - torch.abs(pred_xstart + sqrt_recip_alphas_cumprod * torch.exp(0.5 * out['log_variance']) * noise - ref).view(noise.shape[0], -1).mean(1) | |
# elif loss_type == 'ddpm_inversion': | |
# sqrt_alphas_cumprod = extract_and_expand(self.sqrt_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), ref) | |
# sqrt_one_minus_alphas_cumprod = extract_and_expand(self.sqrt_one_minus_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), ref) | |
# | |
# forward_noise = torch.randn_like(ref) | |
# loss = torch.matmul(noise.view(noise.shape[0], -1), | |
# (sqrt_alphas_cumprod * ref + sqrt_one_minus_alphas_cumprod * forward_noise - out['mean']).view(pred_xstart.shape[0], -1).transpose(0, 1)) | |
# | |
# | |
else: | |
raise NotImplementedError() | |
best_idx = torch.argmax(loss) | |
samples = out['mean'] + torch.exp(0.5 * out['log_variance']) * noise[best_idx].unsqueeze(0) | |
return {'sample': samples if t[0] > 0 else pred_xstart, | |
'pred_xstart': pred_xstart, | |
'mse': loss[best_idx].item(), | |
'best_idx': best_idx} | |
class DDIM(SpacedDiffusion): | |
def p_sample(self, model, x, t, noise, ref, loss_type='mse', eta=0.0, iqa=None, iqa_coef=1.0, | |
optimize_iqa=False, linear_operator=None, y_n=None, random_opt_mse_noises=0, | |
num_pursuit_noises=1, num_pursuit_coef_bits=1, | |
cond_fn=None, | |
cls=None | |
): | |
out = self.p_mean_variance(model, x, t) | |
pred_xstart = out['pred_xstart'] | |
best_perceptual_idx = None | |
if optimize_iqa: | |
assert not random_opt_mse_noises | |
coef_sign = 1 if iqa.lower_better else -1 | |
if iqa.metric_name == 'topiq_nr-face': | |
assert not iqa.lower_better | |
# topiq_nr-face doesn't support a batch size larger than 1. | |
scores = [] | |
for elem in pred_xstart: | |
try: | |
scores.append(iqa((elem.unsqueeze(0) * 0.5 + 0.5).clip(0, 1)).squeeze().view(1)) | |
except AssertionError: | |
# no face detected... | |
scores.append(torch.zeros(1, device=x.device)) | |
scores = torch.stack(scores, dim=0).squeeze() | |
loss = (((ref - pred_xstart) ** 2).view(pred_xstart.shape[0], -1).mean(1) + coef_sign * iqa_coef * scores) | |
else: | |
loss = (((ref - pred_xstart) ** 2).view(pred_xstart.shape[0], -1).mean(1) + coef_sign * iqa_coef * iqa((pred_xstart * 0.5 + 0.5).clip(0, 1)).squeeze()) | |
best_perceptual_idx = torch.argmin(loss) | |
out['pred_xstart'] = out['pred_xstart'][best_perceptual_idx].unsqueeze(0) | |
pred_xstart = pred_xstart[best_perceptual_idx].unsqueeze(0) | |
t = t[best_perceptual_idx] | |
x = x[best_perceptual_idx].unsqueeze(0) | |
elif random_opt_mse_noises > 0: | |
loss = (((ref - pred_xstart) ** 2).view(pred_xstart.shape[0], -1).mean(1)) | |
best_mse_idx = torch.argmin(loss) | |
out['pred_xstart'] = out['pred_xstart'][best_mse_idx].unsqueeze(0) | |
pred_xstart = pred_xstart[best_mse_idx].unsqueeze(0) | |
t = t[best_mse_idx] | |
x = x[best_mse_idx].unsqueeze(0) | |
eps = self.predict_eps_from_x_start(x, t, out['pred_xstart']) | |
alpha_bar = extract_and_expand(self.alphas_cumprod, t, x) | |
alpha_bar_prev = extract_and_expand(self.alphas_cumprod_prev, t, x) | |
sigma = ( | |
eta | |
* torch.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) | |
* torch.sqrt(1 - alpha_bar / alpha_bar_prev) | |
) | |
mean_pred = ( | |
out["pred_xstart"] * torch.sqrt(alpha_bar_prev) | |
+ torch.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps | |
) | |
sample = mean_pred | |
if y_n is not None: | |
assert linear_operator is not None | |
y_n = ref if y_n is None else y_n | |
if not optimize_iqa and random_opt_mse_noises <= 0 and cond_fn is None: | |
if loss_type == 'dot_prod': | |
if linear_operator is None: | |
compute_loss = lambda noise_cur: torch.matmul(noise_cur.view(noise_cur.shape[0], -1), (ref - pred_xstart).view(pred_xstart.shape[0], -1).transpose(0, 1)) | |
else: | |
compute_loss = lambda noise_cur: torch.matmul(linear_operator.forward(noise_cur).reshape(noise_cur.shape[0], -1), (y_n - linear_operator.forward(pred_xstart)).reshape(pred_xstart.shape[0], -1).transpose(0, 1)) | |
elif loss_type == 'mse': | |
if linear_operator is None: | |
compute_loss = lambda noise_cur: - (((sigma / torch.sqrt(alpha_bar_prev)) * noise_cur + pred_xstart - y_n) ** 2).mean((1, 2, 3)) | |
else: | |
compute_loss = lambda noise_cur: - (((sigma / torch.sqrt(alpha_bar_prev))[:, :, :y_n.shape[2], :y_n.shape[3]] * linear_operator.forward(noise_cur) + linear_operator.forward(pred_xstart) - y_n) ** 2).mean((1, 2, 3)) | |
else: | |
raise NotImplementedError() | |
# print("getting loss") | |
loss = compute_loss(noise) | |
best_idx = torch.argmax(loss) | |
best_noise = noise[best_idx] | |
best_loss = loss[best_idx] | |
if num_pursuit_noises > 1: | |
pursuit_coefs = np.linspace(0, 1, 2 ** num_pursuit_coef_bits + 1)[1:] | |
for _ in range(num_pursuit_noises - 1): | |
next_best_noise = best_noise | |
for pursuit_coef in pursuit_coefs: | |
new_noise = best_noise.unsqueeze(0) * np.sqrt(pursuit_coef) + noise * np.sqrt(1 - pursuit_coef) | |
new_noise /= new_noise.view(noise.shape[0], -1).std(1).view(noise.shape[0], 1, 1, 1) | |
cur_loss = compute_loss(new_noise) | |
cur_best_idx = torch.argmax(cur_loss) | |
cur_best_loss = cur_loss[cur_best_idx] | |
if cur_best_loss > best_loss: | |
next_best_noise = new_noise[cur_best_idx] | |
best_loss = cur_best_loss | |
best_noise = next_best_noise | |
if t != 0: | |
sample += sigma * best_noise.unsqueeze(0) | |
return {'sample': sample if t[0] > 0 else pred_xstart, | |
'pred_xstart': pred_xstart, | |
'mse': loss[best_idx].item(), | |
'best_idx': best_idx} | |
else: | |
if random_opt_mse_noises > 0 and not optimize_iqa: | |
num_rand_indices = random_opt_mse_noises | |
elif optimize_iqa and random_opt_mse_noises <= 0: | |
num_rand_indices = 1 | |
elif cond_fn is not None: | |
num_rand_indices = 2 | |
else: | |
raise NotImplementedError() | |
loss = torch.matmul(noise.view(noise.shape[0], -1), | |
(ref - pred_xstart).view(pred_xstart.shape[0], -1).transpose(0, 1)).squeeze() | |
best_idx = torch.argmax(loss).reshape(1) | |
rand_idx = torch.randint(0, noise.shape[0], size=(num_rand_indices, ), device=best_idx.device).reshape(num_rand_indices) | |
best_and_rand_idx = torch.cat((best_idx, rand_idx), dim=0).flatten() | |
if t != 0: | |
sample = sample + sigma * noise[best_and_rand_idx] | |
return {'sample': sample, | |
'pred_xstart': pred_xstart, | |
'best_idx': best_and_rand_idx, | |
'best_perceptual_idx': best_perceptual_idx} | |
def predict_eps_from_x_start(self, x_t, t, pred_xstart): | |
coef1 = extract_and_expand(self.sqrt_recip_alphas_cumprod, t, x_t) | |
coef2 = extract_and_expand(self.sqrt_recipm1_alphas_cumprod, t, x_t) | |
return (coef1 * x_t - pred_xstart) / coef2 | |
# ================= | |
# Helper functions | |
# ================= | |
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): | |
""" | |
Get a pre-defined beta schedule for the given name. | |
The beta schedule library consists of beta schedules which remain similar | |
in the limit of num_diffusion_timesteps. | |
Beta schedules may be added, but should not be removed or changed once | |
they are committed to maintain backwards compatibility. | |
""" | |
if schedule_name == "linear": | |
# Linear schedule from Ho et al, extended to work for any number of | |
# diffusion steps. | |
scale = 1000 / num_diffusion_timesteps | |
beta_start = scale * 0.0001 | |
beta_end = scale * 0.02 | |
return np.linspace( | |
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 | |
) | |
elif schedule_name == "cosine": | |
return betas_for_alpha_bar( | |
num_diffusion_timesteps, | |
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, | |
) | |
else: | |
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, | |
which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
:param num_diffusion_timesteps: the number of betas to produce. | |
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
produces the cumulative product of (1-beta) up to that | |
part of the diffusion process. | |
:param max_beta: the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
""" | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return np.array(betas) | |
# ================ | |
# Helper function | |
# ================ | |
def extract_and_expand(array, time, target): | |
array = torch.from_numpy(array).to(target.device)[time].float() | |
while array.ndim < target.ndim: | |
array = array.unsqueeze(-1) | |
return array.expand_as(target) | |
def expand_as(array, target): | |
if isinstance(array, np.ndarray): | |
array = torch.from_numpy(array) | |
elif isinstance(array, np.float): | |
array = torch.tensor([array]) | |
while array.ndim < target.ndim: | |
array = array.unsqueeze(-1) | |
return array.expand_as(target).to(target.device) | |
def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
""" | |
Extract values from a 1-D numpy array for a batch of indices. | |
:param arr: the 1-D numpy array. | |
:param timesteps: a tensor of indices into the array to extract. | |
:param broadcast_shape: a larger shape of K dimensions with the batch | |
dimension equal to the length of timesteps. | |
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
""" | |
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
while len(res.shape) < len(broadcast_shape): | |
res = res[..., None] | |
return res.expand(broadcast_shape) | |