DEADLOCK007X commited on
Commit
1ba3747
·
verified ·
1 Parent(s): eac8ce2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -12
app.py CHANGED
@@ -4,24 +4,20 @@ import gradio as gr
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
 
6
  def load_model():
7
- model_name = "TheBloke/tiny-llama-7b"
8
- token = os.environ.get("HF_TOKEN")
9
- if not token:
10
- raise ValueError("HF_TOKEN not found in environment variables.")
11
- # Load the tokenizer and model using the provided token
12
- tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
13
- model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=token)
14
  return tokenizer, model
15
 
16
- # Load the model once at startup
17
  tokenizer, model = load_model()
18
 
19
- def evaluate_tinyllama(prompt):
20
  inputs = tokenizer(prompt, return_tensors="pt")
21
  outputs = model.generate(**inputs, max_new_tokens=150)
22
  response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
23
  try:
24
- # Try to parse the model's output as JSON
25
  result = json.loads(response_text.strip())
26
  except Exception as e:
27
  result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
@@ -31,7 +27,7 @@ def evaluate_code(language, question, code):
31
  if not code.strip():
32
  return "Error: No code provided. Please enter your solution code."
33
 
34
- # Build a detailed prompt for the AI evaluator.
35
  prompt = f"""
36
  You are an expert code evaluator.
37
  Rate the following solution on a scale of 0-5 (0 = completely incorrect, 5 = excellent) and provide a concise feedback message.
@@ -41,7 +37,7 @@ Solution: "{code}"
41
  Return ONLY valid JSON: {{"stars": number, "feedback": string}}.
42
  Do not include any extra text.
43
  """
44
- result = evaluate_tinyllama(prompt)
45
  return f"Stars: {result.get('stars', 0)}\nFeedback: {result.get('feedback', '')}"
46
 
47
  iface = gr.Interface(
 
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
 
6
  def load_model():
7
+ # Use a public, open-source model for code evaluation.
8
+ model_name = "Salesforce/codegen-350M-mono"
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ model = AutoModelForCausalLM.from_pretrained(model_name)
 
 
 
11
  return tokenizer, model
12
 
13
+ # Load the model once at startup.
14
  tokenizer, model = load_model()
15
 
16
+ def evaluate_model(prompt):
17
  inputs = tokenizer(prompt, return_tensors="pt")
18
  outputs = model.generate(**inputs, max_new_tokens=150)
19
  response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
20
  try:
 
21
  result = json.loads(response_text.strip())
22
  except Exception as e:
23
  result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
 
27
  if not code.strip():
28
  return "Error: No code provided. Please enter your solution code."
29
 
30
+ # Build the prompt for the evaluation model.
31
  prompt = f"""
32
  You are an expert code evaluator.
33
  Rate the following solution on a scale of 0-5 (0 = completely incorrect, 5 = excellent) and provide a concise feedback message.
 
37
  Return ONLY valid JSON: {{"stars": number, "feedback": string}}.
38
  Do not include any extra text.
39
  """
40
+ result = evaluate_model(prompt)
41
  return f"Stars: {result.get('stars', 0)}\nFeedback: {result.get('feedback', '')}"
42
 
43
  iface = gr.Interface(