DHEIVER's picture
Create app.py
adf2111
raw
history blame
1.31 kB
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
from io import BytesIO
# Load your trained model
model = tf.keras.models.load_model("best_model_weights.h5") # Replace with the path to your saved model
# Define the image classification function
def classify_image(input_image):
# Preprocess the input image
input_image = Image.open(BytesIO(input_image))
input_image = input_image.resize((img_width, img_height))
input_image = np.array(input_image) / 255.0 # Normalize pixel values
# Make a prediction using the model
predictions = model.predict(np.expand_dims(input_image, axis=0))
# Get the class label with the highest probability
class_index = np.argmax(predictions)
class_prob = predictions[0][class_index]
# Define class labels (you can replace these with your actual class labels)
class_labels = ["Normal", "Cataract"]
# Get the class label
class_label = class_labels[class_index]
return f"Predicted Class: {class_label} (Probability: {class_prob:.2f})"
# Define the Gradio interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.inputs.Image(shape=(img_height, img_width)),
outputs="text",
live=True,
title="Image Classifier"
)
# Run the Gradio interface
iface.launch()