File size: 7,300 Bytes
0875db0
 
aeaab85
0875db0
aeaab85
 
dd99e90
0875db0
aeaab85
d0db98d
aeaab85
dd99e90
 
 
 
 
 
aeaab85
 
 
 
 
 
 
 
3e5c67c
56b8e80
3e5c67c
60c0b74
56b8e80
aeaab85
3e5c67c
56b8e80
3e5c67c
56b8e80
3e5c67c
 
 
 
 
 
56b8e80
 
 
 
3e5c67c
56b8e80
 
 
 
 
 
 
 
 
 
 
 
3e5c67c
 
 
 
 
 
 
56b8e80
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5c67c
 
56b8e80
 
 
 
 
3e5c67c
 
 
 
 
 
aeaab85
 
 
3e5c67c
aeaab85
 
 
 
3e5c67c
aeaab85
 
 
 
56b8e80
 
 
 
 
 
 
 
3e5c67c
aeaab85
 
 
3e5c67c
aeaab85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5c67c
aeaab85
 
3e5c67c
aeaab85
 
3e5c67c
aeaab85
 
 
3e5c67c
aeaab85
 
 
3e5c67c
aeaab85
3e5c67c
dd99e90
 
3e5c67c
 
 
 
56b8e80
e12d16d
 
3e5c67c
 
 
 
e12d16d
3e5c67c
 
 
 
 
 
 
 
56b8e80
3e5c67c
 
 
 
 
 
 
 
 
 
 
 
 
32e190b
 
3e5c67c
56b8e80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
from datetime import datetime
from sentence_transformers import SentenceTransformer
import numpy as np
from typing import Dict, List, Tuple
from textblob import TextBlob
import json

# Load embeddings model
model = SentenceTransformer('all-MiniLM-L6-v2')

# Load data from JSON
with open('coach_data.json', 'r', encoding='utf-8') as f:
    data = json.load(f)
    PERGUNTAS = data['perguntas']
    TONE_PATTERNS = data['tone_patterns']
    RESPOSTAS_COACH = data['respostas_coach']

class EnhancedCoach:
    def __init__(self):
        self.pergunta_atual = 0
        self.inicio = datetime.now()
        self.historico_respostas = []
        self.sessao_completa = False
        self.tone_history = []
        self.response_quality_metrics = []
    
    def analyze_response_quality(self, text: str) -> Dict[str, float]:
        sentences = [s.strip() for s in text.split('.') if s.strip()]
        words = text.lower().split()
        
        metrics = {
            "depth": self._calculate_depth(text, words),
            "clarity": self._calculate_clarity(sentences),
            "specificity": self._calculate_specificity(text, words),
            "actionability": self._calculate_actionability(sentences)
        }
        
        self.response_quality_metrics.append(metrics)
        return metrics
    
    def _calculate_depth(self, text: str, words: List[str]) -> float:
        if not words:
            return 0.0
            
        unique_words = len(set(words))
        word_length_avg = sum(len(word) for word in words) / len(words)
        sentences = [s.strip() for s in text.split('.') if s.strip()]
        
        word_variety = unique_words / len(words)
        sentence_length = len(sentences)
        complexity = word_length_avg / 5
        
        depth_score = (word_variety * 0.4 + 
                      min(sentence_length / 3, 1.0) * 0.4 + 
                      complexity * 0.2)
        
        return min(1.0, depth_score)
    
    def _calculate_clarity(self, sentences: List[str]) -> float:
        if not sentences:
            return 0.0
        avg_length = sum(len(s.split()) for s in sentences) / len(sentences)
        return 1.0 if 10 <= avg_length <= 20 else 0.7
    
    def _calculate_specificity(self, text: str, words: List[str]) -> float:
        specific_indicators = [
            "exemplo", "especificamente", "concretamente", 
            "situação", "caso", "quando", "onde", "como",
            "projeto", "equipe", "reunião", "feedback",
            "resultado", "impacto", "mudança", "melhoria",
            "implementei", "desenvolvi", "criei", "estabeleci",
            "eu", "minha", "nosso", "realizei", "fiz"
        ]
        
        indicator_count = sum(text.lower().count(ind) for ind in specific_indicators)
        response_length_factor = min(len(words) / 20, 1.0)
        
        return min(1.0, (indicator_count * 0.7 + response_length_factor * 0.3))
    
    def _calculate_actionability(self, sentences: List[str]) -> float:
        action_verbs = [
            "implementar", "fazer", "criar", "desenvolver", "estabelecer", 
            "planejar", "executar", "medir", "avaliar", "iniciar",
            "construir", "liderar", "coordenar", "definir", "ajustar"
        ]
        if not sentences:
            return 0.0
        actionable = sum(1 for s in sentences 
                        if any(verb in s.lower() for verb in action_verbs))
        return min(1.0, actionable / len(sentences))

    def analisar_tom(self, texto: str) -> Tuple[str, float]:
        texto_lower = texto.lower()
        blob = TextBlob(texto)
        
        tone_scores = {}
        for tone, patterns in TONE_PATTERNS.items():
            score = sum(texto_lower.count(pattern) for pattern in patterns)
            tone_scores[tone] = score * (1 + abs(blob.sentiment.polarity))
            
        predominant_tone = max(tone_scores.items(), key=lambda x: x[1])
        return predominant_tone[0], predominant_tone[1]

    def analisar_sentimento(self, texto: str) -> str:
        positive_words = [
            "consegui", "superei", "aprendi", "melhorei", "efetivo",
            "cresci", "evoluí", "realizei", "alcancei", "progresso"
        ]
        negative_words = [
            "difícil", "desafiador", "complicado", "problema", "falha",
            "obstáculo", "limitação", "erro", "confuso", "inseguro"
        ]
        
        texto_lower = texto.lower()
        positive_count = sum(1 for word in positive_words if word in texto_lower)
        negative_count = sum(1 for word in negative_words if word in texto_lower)
        
        if positive_count > negative_count:
            return "positive"
        elif negative_count > positive_count:
            return "improvement"
        return "neutral"

    def extrair_acao_especifica(self, texto: str) -> str:
        sentences = texto.split('.')
        for sentence in sentences:
            if any(action in sentence.lower() for action in ["eu", "minha", "realizei", "fiz"]):
                return sentence.strip()
        return texto.split('.')[0].strip()

    def encontrar_melhor_resposta(self, texto_usuario: str, categoria: str) -> str:
        sentimento = self.analisar_sentimento(texto_usuario)
        acao_especifica = self.extrair_acao_especifica(texto_usuario)
        
        respostas_categoria = RESPOSTAS_COACH[categoria][sentimento]
        user_embedding = model.encode(texto_usuario)
        
        melhor_resposta = None
        maior_similaridade = -1
        
        for template in respostas_categoria:
            context_embedding = model.encode(template["context"])
            similaridade = np.dot(user_embedding, context_embedding)
            
            if similaridade > maior_similaridade:
                maior_similaridade = similaridade
                melhor_resposta = template["response"]
        
        return melhor_resposta.format(specific_action=acao_especifica.lower())

    # Rest of the methods remain the same...
    # (Previous implementation of gerar_resposta, _gerar_insight_tom, etc.)

def criar_interface():
    coach = EnhancedCoach()
    
    with gr.Blocks(title="Coach de Liderança", theme=gr.themes.Soft()) as app:
        gr.Markdown("""# 🚀 Coach de Liderança
        Desenvolva sua liderança através de reflexão guiada e feedback personalizado.""")
        
        chat = gr.Chatbot(
            value=[[None, coach.primeira_pergunta()]],
            height=600,
            show_label=False
        )
        
        with gr.Row():
            txt = gr.Textbox(
                placeholder="Compartilhe sua reflexão aqui...",
                lines=4,
                label="Sua Resposta"
            )
            btn = gr.Button("Enviar", variant="primary")
        
        def responder(mensagem, historico):
            if not mensagem.strip():
                return "", historico
            
            resposta = coach.gerar_resposta(mensagem)
            historico.append([mensagem, resposta])
            return "", historico
        
        txt.submit(responder, [txt, chat], [txt, chat])
        btn.click(responder, [txt, chat], [txt, chat])
    
    return app

if __name__ == "__main__":
    app = criar_interface()
    app.launch()