Spaces:
Sleeping
Sleeping
File size: 7,300 Bytes
0875db0 aeaab85 0875db0 aeaab85 dd99e90 0875db0 aeaab85 d0db98d aeaab85 dd99e90 aeaab85 3e5c67c 56b8e80 3e5c67c 60c0b74 56b8e80 aeaab85 3e5c67c 56b8e80 3e5c67c 56b8e80 3e5c67c 56b8e80 3e5c67c 56b8e80 3e5c67c 56b8e80 3e5c67c 56b8e80 3e5c67c aeaab85 3e5c67c aeaab85 3e5c67c aeaab85 56b8e80 3e5c67c aeaab85 3e5c67c aeaab85 3e5c67c aeaab85 3e5c67c aeaab85 3e5c67c aeaab85 3e5c67c aeaab85 3e5c67c aeaab85 3e5c67c dd99e90 3e5c67c 56b8e80 e12d16d 3e5c67c e12d16d 3e5c67c 56b8e80 3e5c67c 32e190b 3e5c67c 56b8e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
from datetime import datetime
from sentence_transformers import SentenceTransformer
import numpy as np
from typing import Dict, List, Tuple
from textblob import TextBlob
import json
# Load embeddings model
model = SentenceTransformer('all-MiniLM-L6-v2')
# Load data from JSON
with open('coach_data.json', 'r', encoding='utf-8') as f:
data = json.load(f)
PERGUNTAS = data['perguntas']
TONE_PATTERNS = data['tone_patterns']
RESPOSTAS_COACH = data['respostas_coach']
class EnhancedCoach:
def __init__(self):
self.pergunta_atual = 0
self.inicio = datetime.now()
self.historico_respostas = []
self.sessao_completa = False
self.tone_history = []
self.response_quality_metrics = []
def analyze_response_quality(self, text: str) -> Dict[str, float]:
sentences = [s.strip() for s in text.split('.') if s.strip()]
words = text.lower().split()
metrics = {
"depth": self._calculate_depth(text, words),
"clarity": self._calculate_clarity(sentences),
"specificity": self._calculate_specificity(text, words),
"actionability": self._calculate_actionability(sentences)
}
self.response_quality_metrics.append(metrics)
return metrics
def _calculate_depth(self, text: str, words: List[str]) -> float:
if not words:
return 0.0
unique_words = len(set(words))
word_length_avg = sum(len(word) for word in words) / len(words)
sentences = [s.strip() for s in text.split('.') if s.strip()]
word_variety = unique_words / len(words)
sentence_length = len(sentences)
complexity = word_length_avg / 5
depth_score = (word_variety * 0.4 +
min(sentence_length / 3, 1.0) * 0.4 +
complexity * 0.2)
return min(1.0, depth_score)
def _calculate_clarity(self, sentences: List[str]) -> float:
if not sentences:
return 0.0
avg_length = sum(len(s.split()) for s in sentences) / len(sentences)
return 1.0 if 10 <= avg_length <= 20 else 0.7
def _calculate_specificity(self, text: str, words: List[str]) -> float:
specific_indicators = [
"exemplo", "especificamente", "concretamente",
"situação", "caso", "quando", "onde", "como",
"projeto", "equipe", "reunião", "feedback",
"resultado", "impacto", "mudança", "melhoria",
"implementei", "desenvolvi", "criei", "estabeleci",
"eu", "minha", "nosso", "realizei", "fiz"
]
indicator_count = sum(text.lower().count(ind) for ind in specific_indicators)
response_length_factor = min(len(words) / 20, 1.0)
return min(1.0, (indicator_count * 0.7 + response_length_factor * 0.3))
def _calculate_actionability(self, sentences: List[str]) -> float:
action_verbs = [
"implementar", "fazer", "criar", "desenvolver", "estabelecer",
"planejar", "executar", "medir", "avaliar", "iniciar",
"construir", "liderar", "coordenar", "definir", "ajustar"
]
if not sentences:
return 0.0
actionable = sum(1 for s in sentences
if any(verb in s.lower() for verb in action_verbs))
return min(1.0, actionable / len(sentences))
def analisar_tom(self, texto: str) -> Tuple[str, float]:
texto_lower = texto.lower()
blob = TextBlob(texto)
tone_scores = {}
for tone, patterns in TONE_PATTERNS.items():
score = sum(texto_lower.count(pattern) for pattern in patterns)
tone_scores[tone] = score * (1 + abs(blob.sentiment.polarity))
predominant_tone = max(tone_scores.items(), key=lambda x: x[1])
return predominant_tone[0], predominant_tone[1]
def analisar_sentimento(self, texto: str) -> str:
positive_words = [
"consegui", "superei", "aprendi", "melhorei", "efetivo",
"cresci", "evoluí", "realizei", "alcancei", "progresso"
]
negative_words = [
"difícil", "desafiador", "complicado", "problema", "falha",
"obstáculo", "limitação", "erro", "confuso", "inseguro"
]
texto_lower = texto.lower()
positive_count = sum(1 for word in positive_words if word in texto_lower)
negative_count = sum(1 for word in negative_words if word in texto_lower)
if positive_count > negative_count:
return "positive"
elif negative_count > positive_count:
return "improvement"
return "neutral"
def extrair_acao_especifica(self, texto: str) -> str:
sentences = texto.split('.')
for sentence in sentences:
if any(action in sentence.lower() for action in ["eu", "minha", "realizei", "fiz"]):
return sentence.strip()
return texto.split('.')[0].strip()
def encontrar_melhor_resposta(self, texto_usuario: str, categoria: str) -> str:
sentimento = self.analisar_sentimento(texto_usuario)
acao_especifica = self.extrair_acao_especifica(texto_usuario)
respostas_categoria = RESPOSTAS_COACH[categoria][sentimento]
user_embedding = model.encode(texto_usuario)
melhor_resposta = None
maior_similaridade = -1
for template in respostas_categoria:
context_embedding = model.encode(template["context"])
similaridade = np.dot(user_embedding, context_embedding)
if similaridade > maior_similaridade:
maior_similaridade = similaridade
melhor_resposta = template["response"]
return melhor_resposta.format(specific_action=acao_especifica.lower())
# Rest of the methods remain the same...
# (Previous implementation of gerar_resposta, _gerar_insight_tom, etc.)
def criar_interface():
coach = EnhancedCoach()
with gr.Blocks(title="Coach de Liderança", theme=gr.themes.Soft()) as app:
gr.Markdown("""# 🚀 Coach de Liderança
Desenvolva sua liderança através de reflexão guiada e feedback personalizado.""")
chat = gr.Chatbot(
value=[[None, coach.primeira_pergunta()]],
height=600,
show_label=False
)
with gr.Row():
txt = gr.Textbox(
placeholder="Compartilhe sua reflexão aqui...",
lines=4,
label="Sua Resposta"
)
btn = gr.Button("Enviar", variant="primary")
def responder(mensagem, historico):
if not mensagem.strip():
return "", historico
resposta = coach.gerar_resposta(mensagem)
historico.append([mensagem, resposta])
return "", historico
txt.submit(responder, [txt, chat], [txt, chat])
btn.click(responder, [txt, chat], [txt, chat])
return app
if __name__ == "__main__":
app = criar_interface()
app.launch() |