RAG-CHAT / app.py
DHEIVER's picture
Update app.py
e3a960d verified
raw
history blame
14.3 kB
import gradio as gr
import os
import torch
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
api_token = os.getenv("HF_TOKEN")
# Available LLM models
list_llm = [
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.2",
"deepseek-ai/deepseek-llm-7b-chat"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def load_doc(list_file_path):
"""Load and split PDF documents into chunks"""
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits):
"""Create vector database from document splits"""
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
"""Initialize the language model chain"""
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
task="text-generation"
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
def initialize_database(list_file_obj, progress=gr.Progress()):
"""Initialize the document database"""
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Database created successfully!"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
"""Initialize the Language Model"""
llm_name = list_llm[llm_option]
print("Selected LLM model:", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Analysis Assistant initialized and ready!"
def format_chat_history(message, chat_history):
"""Format chat history for the model"""
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
"""Handle conversation and document analysis"""
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
# [Previous imports remain the same...]
def demo():
"""Main demo application with enhanced layout"""
theme = gr.themes.Default(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
)
# Custom CSS for advanced layout
custom_css = """
#app-header {
text-align: center;
padding: 2rem;
background: linear-gradient(to right, #1a365d, #2c5282);
color: white;
margin-bottom: 2rem;
border-radius: 0 0 1rem 1rem;
}
#app-header h1 {
font-size: 2.5rem;
margin-bottom: 0.5rem;
color: white;
}
#app-header p {
font-size: 1.2rem;
opacity: 0.9;
}
.container {
max-width: 1400px;
margin: 0 auto;
padding: 0 1rem;
}
.features-grid {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 1rem;
margin-bottom: 2rem;
}
.feature-card {
background: #f8fafc;
padding: 1.5rem;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
}
.section-title {
font-size: 1.5rem;
color: #1a365d;
margin-bottom: 1rem;
padding-bottom: 0.5rem;
border-bottom: 2px solid #e2e8f0;
}
.control-panel {
background: #f8fafc;
padding: 1.5rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
}
.chat-container {
background: white;
border-radius: 0.5rem;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}
.reference-panel {
background: #f8fafc;
padding: 1rem;
border-radius: 0.5rem;
margin-top: 1rem;
}
"""
with gr.Blocks(theme=theme, css=custom_css) as demo:
vector_db = gr.State()
qa_chain = gr.State()
# Enhanced Header
with gr.Row(elem_id="app-header"):
with gr.Column():
gr.HTML(
"""
<h1>MetroAssist AI</h1>
<p>Expert System for Metrology Report Analysis</p>
"""
)
# Main Content Container
with gr.Row(equal_height=True):
# Left Column - Control Panel
with gr.Column(scale=1):
with gr.Group(visible=True) as control_panel:
gr.Markdown("## Document Processing", elem_classes="section-title")
# File Upload Section
with gr.Box(elem_classes="control-panel"):
gr.Markdown("### πŸ“„ Upload Documents")
document = gr.Files(
label="Metrology Reports (PDF)",
file_count="multiple",
file_types=["pdf"],
)
db_btn = gr.Button("Process Documents", elem_classes="primary-btn")
db_progress = gr.Textbox(
value="Ready for documents",
label="Processing Status",
)
# Model Selection Section
with gr.Box(elem_classes="control-panel"):
gr.Markdown("### πŸ€– Model Configuration")
llm_btn = gr.Radio(
choices=list_llm_simple,
label="Select AI Model",
value=list_llm_simple[0],
type="index"
)
# Advanced Parameters
with gr.Accordion("Advanced Settings", open=False):
slider_temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.5,
step=0.1,
label="Analysis Precision"
)
slider_maxtokens = gr.Slider(
minimum=128,
maximum=9192,
value=4096,
step=128,
label="Response Length"
)
slider_topk = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Analysis Diversity"
)
qachain_btn = gr.Button("Initialize Assistant")
llm_progress = gr.Textbox(
value="Not initialized",
label="Assistant Status"
)
# Right Column - Chat Interface
with gr.Column(scale=2):
with gr.Group() as chat_interface:
gr.Markdown("## Interactive Analysis", elem_classes="section-title")
# Feature Cards
with gr.Row(equal_height=True) as feature_grid:
with gr.Column():
gr.Markdown(
"""
### πŸ“Š Capabilities
- Calibration Analysis
- Standards Compliance
- Uncertainty Evaluation
"""
)
with gr.Column():
gr.Markdown(
"""
### πŸ’‘ Best Practices
- Ask specific questions
- Include measurement context
- Specify standards
"""
)
# Chat Interface
with gr.Box(elem_classes="chat-container"):
chatbot = gr.Chatbot(
height=400,
label="Analysis Conversation"
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask about your metrology report...",
label="Query",
scale=4
)
submit_btn = gr.Button("Send")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Reference Panel
with gr.Accordion("Document References", open=False, elem_classes="reference-panel"):
with gr.Row():
with gr.Column():
doc_source1 = gr.Textbox(label="Reference 1", lines=2)
source1_page = gr.Number(label="Page")
with gr.Column():
doc_source2 = gr.Textbox(label="Reference 2", lines=2)
source2_page = gr.Number(label="Page")
with gr.Column():
doc_source3 = gr.Textbox(label="Reference 3", lines=2)
source3_page = gr.Number(label="Page")
# Footer
with gr.Row():
gr.Markdown(
"""
---
### About MetroAssist AI
A specialized tool for metrology professionals, providing advanced analysis
of calibration certificates, measurement data, and technical standards compliance.
**Version 1.0** | Β© 2024 MetroAssist AI
"""
)
# Event Handlers
db_btn.click(
initialize_database,
inputs=[document],
outputs=[vector_db, db_progress]
)
qachain_btn.click(
initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress]
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()