File size: 14,301 Bytes
15f3912 914f0c8 15f3912 914f0c8 3bf61c2 15f3912 04f5606 15f3912 914f0c8 15f3912 04f5606 15f3912 04f5606 3bf61c2 15f3912 1acc22b 15f3912 914f0c8 15f3912 3bf61c2 15f3912 04f5606 15f3912 914f0c8 15f3912 04f5606 15f3912 914f0c8 15f3912 914f0c8 15f3912 04f5606 15f3912 04f5606 15f3912 e3a960d 15f3912 e3a960d 3bf61c2 914f0c8 3bf61c2 e3a960d 15f3912 914f0c8 e3a960d 914f0c8 e3a960d 914f0c8 04f5606 914f0c8 04f5606 914f0c8 04f5606 914f0c8 e3a960d 914f0c8 e3a960d 914f0c8 e3a960d 914f0c8 e3a960d 914f0c8 e3a960d 914f0c8 15f3912 3bf61c2 15f3912 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import gradio as gr
import os
import torch
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
api_token = os.getenv("HF_TOKEN")
# Available LLM models
list_llm = [
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.2",
"deepseek-ai/deepseek-llm-7b-chat"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def load_doc(list_file_path):
"""Load and split PDF documents into chunks"""
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits):
"""Create vector database from document splits"""
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
"""Initialize the language model chain"""
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
task="text-generation"
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
def initialize_database(list_file_obj, progress=gr.Progress()):
"""Initialize the document database"""
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Database created successfully!"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
"""Initialize the Language Model"""
llm_name = list_llm[llm_option]
print("Selected LLM model:", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Analysis Assistant initialized and ready!"
def format_chat_history(message, chat_history):
"""Format chat history for the model"""
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
"""Handle conversation and document analysis"""
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
# [Previous imports remain the same...]
def demo():
"""Main demo application with enhanced layout"""
theme = gr.themes.Default(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
)
# Custom CSS for advanced layout
custom_css = """
#app-header {
text-align: center;
padding: 2rem;
background: linear-gradient(to right, #1a365d, #2c5282);
color: white;
margin-bottom: 2rem;
border-radius: 0 0 1rem 1rem;
}
#app-header h1 {
font-size: 2.5rem;
margin-bottom: 0.5rem;
color: white;
}
#app-header p {
font-size: 1.2rem;
opacity: 0.9;
}
.container {
max-width: 1400px;
margin: 0 auto;
padding: 0 1rem;
}
.features-grid {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 1rem;
margin-bottom: 2rem;
}
.feature-card {
background: #f8fafc;
padding: 1.5rem;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
}
.section-title {
font-size: 1.5rem;
color: #1a365d;
margin-bottom: 1rem;
padding-bottom: 0.5rem;
border-bottom: 2px solid #e2e8f0;
}
.control-panel {
background: #f8fafc;
padding: 1.5rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
}
.chat-container {
background: white;
border-radius: 0.5rem;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}
.reference-panel {
background: #f8fafc;
padding: 1rem;
border-radius: 0.5rem;
margin-top: 1rem;
}
"""
with gr.Blocks(theme=theme, css=custom_css) as demo:
vector_db = gr.State()
qa_chain = gr.State()
# Enhanced Header
with gr.Row(elem_id="app-header"):
with gr.Column():
gr.HTML(
"""
<h1>MetroAssist AI</h1>
<p>Expert System for Metrology Report Analysis</p>
"""
)
# Main Content Container
with gr.Row(equal_height=True):
# Left Column - Control Panel
with gr.Column(scale=1):
with gr.Group(visible=True) as control_panel:
gr.Markdown("## Document Processing", elem_classes="section-title")
# File Upload Section
with gr.Box(elem_classes="control-panel"):
gr.Markdown("### π Upload Documents")
document = gr.Files(
label="Metrology Reports (PDF)",
file_count="multiple",
file_types=["pdf"],
)
db_btn = gr.Button("Process Documents", elem_classes="primary-btn")
db_progress = gr.Textbox(
value="Ready for documents",
label="Processing Status",
)
# Model Selection Section
with gr.Box(elem_classes="control-panel"):
gr.Markdown("### π€ Model Configuration")
llm_btn = gr.Radio(
choices=list_llm_simple,
label="Select AI Model",
value=list_llm_simple[0],
type="index"
)
# Advanced Parameters
with gr.Accordion("Advanced Settings", open=False):
slider_temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.5,
step=0.1,
label="Analysis Precision"
)
slider_maxtokens = gr.Slider(
minimum=128,
maximum=9192,
value=4096,
step=128,
label="Response Length"
)
slider_topk = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Analysis Diversity"
)
qachain_btn = gr.Button("Initialize Assistant")
llm_progress = gr.Textbox(
value="Not initialized",
label="Assistant Status"
)
# Right Column - Chat Interface
with gr.Column(scale=2):
with gr.Group() as chat_interface:
gr.Markdown("## Interactive Analysis", elem_classes="section-title")
# Feature Cards
with gr.Row(equal_height=True) as feature_grid:
with gr.Column():
gr.Markdown(
"""
### π Capabilities
- Calibration Analysis
- Standards Compliance
- Uncertainty Evaluation
"""
)
with gr.Column():
gr.Markdown(
"""
### π‘ Best Practices
- Ask specific questions
- Include measurement context
- Specify standards
"""
)
# Chat Interface
with gr.Box(elem_classes="chat-container"):
chatbot = gr.Chatbot(
height=400,
label="Analysis Conversation"
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask about your metrology report...",
label="Query",
scale=4
)
submit_btn = gr.Button("Send")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Reference Panel
with gr.Accordion("Document References", open=False, elem_classes="reference-panel"):
with gr.Row():
with gr.Column():
doc_source1 = gr.Textbox(label="Reference 1", lines=2)
source1_page = gr.Number(label="Page")
with gr.Column():
doc_source2 = gr.Textbox(label="Reference 2", lines=2)
source2_page = gr.Number(label="Page")
with gr.Column():
doc_source3 = gr.Textbox(label="Reference 3", lines=2)
source3_page = gr.Number(label="Page")
# Footer
with gr.Row():
gr.Markdown(
"""
---
### About MetroAssist AI
A specialized tool for metrology professionals, providing advanced analysis
of calibration certificates, measurement data, and technical standards compliance.
**Version 1.0** | Β© 2024 MetroAssist AI
"""
)
# Event Handlers
db_btn.click(
initialize_database,
inputs=[document],
outputs=[vector_db, db_progress]
)
qachain_btn.click(
initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress]
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |