Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
|
4 |
-
|
5 |
from langchain_community.vectorstores import FAISS
|
6 |
from langchain_community.document_loaders import PyPDFLoader
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
@@ -12,9 +11,10 @@ from langchain_community.llms import HuggingFacePipeline
|
|
12 |
from langchain.chains import ConversationChain
|
13 |
from langchain.memory import ConversationBufferMemory
|
14 |
from langchain_community.llms import HuggingFaceEndpoint
|
15 |
-
import torch
|
16 |
|
17 |
-
|
|
|
|
|
18 |
list_llm = [
|
19 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
20 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
@@ -22,25 +22,33 @@ list_llm = [
|
|
22 |
]
|
23 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
24 |
|
25 |
-
# Rest of the functions remain the same until demo()
|
26 |
def load_doc(list_file_path):
|
|
|
|
|
|
|
27 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
28 |
pages = []
|
29 |
for loader in loaders:
|
30 |
pages.extend(loader.load())
|
31 |
text_splitter = RecursiveCharacterTextSplitter(
|
32 |
-
chunk_size
|
33 |
-
chunk_overlap
|
34 |
-
)
|
35 |
doc_splits = text_splitter.split_documents(pages)
|
36 |
return doc_splits
|
37 |
|
38 |
def create_db(splits):
|
|
|
|
|
|
|
39 |
embeddings = HuggingFaceEmbeddings()
|
40 |
vectordb = FAISS.from_documents(splits, embeddings)
|
41 |
return vectordb
|
42 |
|
43 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
|
|
|
|
44 |
llm = HuggingFaceEndpoint(
|
45 |
repo_id=llm_model,
|
46 |
huggingfacehub_api_token=api_token,
|
@@ -60,7 +68,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
60 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
61 |
llm,
|
62 |
retriever=retriever,
|
63 |
-
chain_type="stuff",
|
64 |
memory=memory,
|
65 |
return_source_documents=True,
|
66 |
verbose=False,
|
@@ -68,18 +76,27 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
68 |
return qa_chain
|
69 |
|
70 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
|
|
|
|
|
|
71 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
72 |
doc_splits = load_doc(list_file_path)
|
73 |
vector_db = create_db(doc_splits)
|
74 |
-
return vector_db, "Database created!"
|
75 |
|
76 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
|
|
|
|
77 |
llm_name = list_llm[llm_option]
|
78 |
-
print("
|
79 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
80 |
-
return qa_chain, "
|
81 |
|
82 |
def format_chat_history(message, chat_history):
|
|
|
|
|
|
|
83 |
formatted_chat_history = []
|
84 |
for user_message, bot_message in chat_history:
|
85 |
formatted_chat_history.append(f"User: {user_message}")
|
@@ -87,6 +104,9 @@ def format_chat_history(message, chat_history):
|
|
87 |
return formatted_chat_history
|
88 |
|
89 |
def conversation(qa_chain, message, history):
|
|
|
|
|
|
|
90 |
formatted_chat_history = format_chat_history(message, history)
|
91 |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
92 |
response_answer = response["answer"]
|
@@ -102,95 +122,272 @@ def conversation(qa_chain, message, history):
|
|
102 |
new_history = history + [(message, response_answer)]
|
103 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
104 |
|
105 |
-
def upload_file(file_obj):
|
106 |
-
list_file_path = []
|
107 |
-
for idx, file in enumerate(file_obj):
|
108 |
-
file_path = file_obj.name
|
109 |
-
list_file_path.append(file_path)
|
110 |
-
return list_file_path
|
111 |
-
|
112 |
def demo():
|
113 |
-
|
|
|
|
|
|
|
114 |
theme = gr.themes.Default(
|
115 |
primary_hue="indigo",
|
116 |
secondary_hue="blue",
|
117 |
-
neutral_hue="slate"
|
|
|
118 |
)
|
119 |
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
vector_db = gr.State()
|
122 |
qa_chain = gr.State()
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
with gr.Row():
|
128 |
-
with gr.Column(scale
|
129 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
130 |
with gr.Row():
|
131 |
-
document = gr.Files(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
with gr.Row():
|
133 |
-
db_btn = gr.Button(
|
|
|
|
|
|
|
|
|
134 |
with gr.Row():
|
135 |
-
db_progress = gr.Textbox(
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
with gr.Row():
|
138 |
-
llm_btn = gr.Radio(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
with gr.Row():
|
140 |
-
with gr.Accordion("
|
141 |
with gr.Row():
|
142 |
-
slider_temperature = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
with gr.Row():
|
144 |
-
slider_maxtokens = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
with gr.Row():
|
146 |
-
slider_topk = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
with gr.Row():
|
148 |
-
qachain_btn = gr.Button(
|
|
|
|
|
|
|
|
|
149 |
with gr.Row():
|
150 |
-
llm_progress = gr.Textbox(
|
|
|
|
|
|
|
151 |
|
152 |
-
with gr.Column(scale
|
153 |
-
gr.Markdown(
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
with gr.Row():
|
157 |
-
doc_source1 = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
158 |
source1_page = gr.Number(label="Page", scale=1)
|
159 |
with gr.Row():
|
160 |
-
doc_source2 = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
161 |
source2_page = gr.Number(label="Page", scale=1)
|
162 |
with gr.Row():
|
163 |
-
doc_source3 = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
164 |
source3_page = gr.Number(label="Page", scale=1)
|
|
|
165 |
with gr.Row():
|
166 |
-
msg = gr.Textbox(
|
|
|
|
|
|
|
|
|
167 |
with gr.Row():
|
168 |
-
submit_btn = gr.Button(
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
# Event handlers
|
172 |
-
db_btn.click(
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
inputs=
|
192 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
193 |
-
queue=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
demo.queue().launch(debug=True)
|
196 |
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
import torch
|
|
|
4 |
from langchain_community.vectorstores import FAISS
|
5 |
from langchain_community.document_loaders import PyPDFLoader
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
11 |
from langchain.chains import ConversationChain
|
12 |
from langchain.memory import ConversationBufferMemory
|
13 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
14 |
|
15 |
+
api_token = os.getenv("HF_TOKEN")
|
16 |
+
|
17 |
+
# Available LLM models
|
18 |
list_llm = [
|
19 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
20 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
|
|
22 |
]
|
23 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
24 |
|
|
|
25 |
def load_doc(list_file_path):
|
26 |
+
"""
|
27 |
+
Load and split PDF documents into chunks
|
28 |
+
"""
|
29 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
30 |
pages = []
|
31 |
for loader in loaders:
|
32 |
pages.extend(loader.load())
|
33 |
text_splitter = RecursiveCharacterTextSplitter(
|
34 |
+
chunk_size=1024,
|
35 |
+
chunk_overlap=64
|
36 |
+
)
|
37 |
doc_splits = text_splitter.split_documents(pages)
|
38 |
return doc_splits
|
39 |
|
40 |
def create_db(splits):
|
41 |
+
"""
|
42 |
+
Create vector database from document splits
|
43 |
+
"""
|
44 |
embeddings = HuggingFaceEmbeddings()
|
45 |
vectordb = FAISS.from_documents(splits, embeddings)
|
46 |
return vectordb
|
47 |
|
48 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
49 |
+
"""
|
50 |
+
Initialize the language model chain
|
51 |
+
"""
|
52 |
llm = HuggingFaceEndpoint(
|
53 |
repo_id=llm_model,
|
54 |
huggingfacehub_api_token=api_token,
|
|
|
68 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
69 |
llm,
|
70 |
retriever=retriever,
|
71 |
+
chain_type="stuff",
|
72 |
memory=memory,
|
73 |
return_source_documents=True,
|
74 |
verbose=False,
|
|
|
76 |
return qa_chain
|
77 |
|
78 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
79 |
+
"""
|
80 |
+
Initialize the document database
|
81 |
+
"""
|
82 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
83 |
doc_splits = load_doc(list_file_path)
|
84 |
vector_db = create_db(doc_splits)
|
85 |
+
return vector_db, "Database created successfully!"
|
86 |
|
87 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
88 |
+
"""
|
89 |
+
Initialize the Language Model
|
90 |
+
"""
|
91 |
llm_name = list_llm[llm_option]
|
92 |
+
print("Selected LLM model:", llm_name)
|
93 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
94 |
+
return qa_chain, "Analysis Assistant initialized and ready!"
|
95 |
|
96 |
def format_chat_history(message, chat_history):
|
97 |
+
"""
|
98 |
+
Format chat history for the model
|
99 |
+
"""
|
100 |
formatted_chat_history = []
|
101 |
for user_message, bot_message in chat_history:
|
102 |
formatted_chat_history.append(f"User: {user_message}")
|
|
|
104 |
return formatted_chat_history
|
105 |
|
106 |
def conversation(qa_chain, message, history):
|
107 |
+
"""
|
108 |
+
Handle conversation and document analysis
|
109 |
+
"""
|
110 |
formatted_chat_history = format_chat_history(message, history)
|
111 |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
112 |
response_answer = response["answer"]
|
|
|
122 |
new_history = history + [(message, response_answer)]
|
123 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
def demo():
|
126 |
+
"""
|
127 |
+
Main demo application
|
128 |
+
"""
|
129 |
+
# Enhanced theme with professional colors
|
130 |
theme = gr.themes.Default(
|
131 |
primary_hue="indigo",
|
132 |
secondary_hue="blue",
|
133 |
+
neutral_hue="slate",
|
134 |
+
font=[gr.themes.GoogleFont("Roboto"), "system-ui", "sans-serif"]
|
135 |
)
|
136 |
|
137 |
+
css = """
|
138 |
+
.container { max-width: 1200px; margin: auto; }
|
139 |
+
.metadata { font-size: 0.9em; color: #666; }
|
140 |
+
.highlight { background-color: #f0f7ff; padding: 1em; border-radius: 8px; }
|
141 |
+
.warning { color: #e53e3e; }
|
142 |
+
.success { color: #38a169; }
|
143 |
+
"""
|
144 |
+
|
145 |
+
with gr.Blocks(theme=theme, css=css) as demo:
|
146 |
vector_db = gr.State()
|
147 |
qa_chain = gr.State()
|
148 |
+
|
149 |
+
# Enhanced header
|
150 |
+
gr.HTML(
|
151 |
+
"""
|
152 |
+
<div style='text-align: center; padding: 20px;'>
|
153 |
+
<h1 style='color: #1a365d; margin-bottom: 10px;'>MetroAssist AI - Expert in Metrology Report Analysis</h1>
|
154 |
+
<p style='color: #4a5568; font-size: 1.2em;'>Your intelligent assistant for advanced analysis of metrological documents</p>
|
155 |
+
</div>
|
156 |
+
"""
|
157 |
+
)
|
158 |
+
|
159 |
+
# Marketing and feature description
|
160 |
+
gr.Markdown(
|
161 |
+
"""
|
162 |
+
### 🔍 Specialized Metrology Analysis
|
163 |
+
|
164 |
+
MetroAssist AI is a specialized assistant designed to revolutionize metrology report analysis.
|
165 |
+
Powered by cutting-edge AI technology, it offers:
|
166 |
+
|
167 |
+
* **Precise Analysis**: Detailed interpretation of measurements, calibrations, and compliance
|
168 |
+
* **Intelligent Contextualization**: Deep understanding of metrological standards and norms
|
169 |
+
* **Advanced Technical Support**: Assistance in complex instrument and measurement analyses
|
170 |
+
* **Rapid Processing**: Efficient analysis of multiple technical documents
|
171 |
+
|
172 |
+
⚠️ **Security Note**: Your documents are processed with complete security. We do not permanently store confidential data.
|
173 |
+
"""
|
174 |
+
)
|
175 |
+
|
176 |
with gr.Row():
|
177 |
+
with gr.Column(scale=86):
|
178 |
+
gr.Markdown(
|
179 |
+
"""
|
180 |
+
### 📥 Step 1: Document Loading and Preparation
|
181 |
+
Upload your metrology reports for expert analysis.
|
182 |
+
"""
|
183 |
+
)
|
184 |
with gr.Row():
|
185 |
+
document = gr.Files(
|
186 |
+
height=300,
|
187 |
+
file_count="multiple",
|
188 |
+
file_types=["pdf"],
|
189 |
+
interactive=True,
|
190 |
+
label="Upload Metrology Reports (PDF)",
|
191 |
+
info="Accepts multiple PDF files"
|
192 |
+
)
|
193 |
with gr.Row():
|
194 |
+
db_btn = gr.Button(
|
195 |
+
"Process Documents",
|
196 |
+
variant="primary",
|
197 |
+
size="lg"
|
198 |
+
)
|
199 |
with gr.Row():
|
200 |
+
db_progress = gr.Textbox(
|
201 |
+
value="Waiting for documents...",
|
202 |
+
show_label=False,
|
203 |
+
container=False
|
204 |
+
)
|
205 |
+
|
206 |
+
gr.Markdown(
|
207 |
+
"""
|
208 |
+
### 🤖 Analysis Engine Configuration
|
209 |
+
Select and configure the AI model to best meet your needs.
|
210 |
+
"""
|
211 |
+
)
|
212 |
with gr.Row():
|
213 |
+
llm_btn = gr.Radio(
|
214 |
+
list_llm_simple,
|
215 |
+
label="Available AI Models",
|
216 |
+
value=list_llm_simple[0],
|
217 |
+
type="index",
|
218 |
+
info="Choose the most suitable model for your analysis"
|
219 |
+
)
|
220 |
+
|
221 |
with gr.Row():
|
222 |
+
with gr.Accordion("Advanced Analysis Parameters", open=False):
|
223 |
with gr.Row():
|
224 |
+
slider_temperature = gr.Slider(
|
225 |
+
minimum=0.01,
|
226 |
+
maximum=1.0,
|
227 |
+
value=0.5,
|
228 |
+
step=0.1,
|
229 |
+
label="Analysis Precision",
|
230 |
+
info="Controls the balance between precision and creativity in analysis",
|
231 |
+
interactive=True
|
232 |
+
)
|
233 |
with gr.Row():
|
234 |
+
slider_maxtokens = gr.Slider(
|
235 |
+
minimum=128,
|
236 |
+
maximum=9192,
|
237 |
+
value=4096,
|
238 |
+
step=128,
|
239 |
+
label="Response Length",
|
240 |
+
info="Defines the level of detail in analyses",
|
241 |
+
interactive=True
|
242 |
+
)
|
243 |
with gr.Row():
|
244 |
+
slider_topk = gr.Slider(
|
245 |
+
minimum=1,
|
246 |
+
maximum=10,
|
247 |
+
value=3,
|
248 |
+
step=1,
|
249 |
+
label="Analysis Diversity",
|
250 |
+
info="Controls the variety of perspectives in analysis",
|
251 |
+
interactive=True
|
252 |
+
)
|
253 |
+
|
254 |
with gr.Row():
|
255 |
+
qachain_btn = gr.Button(
|
256 |
+
"Initialize Analysis Assistant",
|
257 |
+
variant="primary",
|
258 |
+
size="lg"
|
259 |
+
)
|
260 |
with gr.Row():
|
261 |
+
llm_progress = gr.Textbox(
|
262 |
+
value="Waiting for initialization...",
|
263 |
+
show_label=False
|
264 |
+
)
|
265 |
|
266 |
+
with gr.Column(scale=200):
|
267 |
+
gr.Markdown(
|
268 |
+
"""
|
269 |
+
### 💬 Step 2: Expert Consultation and Analysis
|
270 |
+
Ask questions about your metrology reports. The assistant will provide detailed technical analyses.
|
271 |
+
|
272 |
+
**Suggested questions:**
|
273 |
+
- Analyze the calibration results of this instrument
|
274 |
+
- Verify compliance with technical standards
|
275 |
+
- Identify critical points in measurements
|
276 |
+
- Compare results with specified limits
|
277 |
+
- Evaluate measurement uncertainty
|
278 |
+
- Assess calibration intervals
|
279 |
+
"""
|
280 |
+
)
|
281 |
+
chatbot = gr.Chatbot(
|
282 |
+
height=505,
|
283 |
+
show_label=True,
|
284 |
+
container=True,
|
285 |
+
label="Metrology Analysis"
|
286 |
+
)
|
287 |
+
|
288 |
+
with gr.Accordion("Source Document References", open=False):
|
289 |
with gr.Row():
|
290 |
+
doc_source1 = gr.Textbox(
|
291 |
+
label="Technical Reference 1",
|
292 |
+
lines=2,
|
293 |
+
container=True,
|
294 |
+
scale=20
|
295 |
+
)
|
296 |
source1_page = gr.Number(label="Page", scale=1)
|
297 |
with gr.Row():
|
298 |
+
doc_source2 = gr.Textbox(
|
299 |
+
label="Technical Reference 2",
|
300 |
+
lines=2,
|
301 |
+
container=True,
|
302 |
+
scale=20
|
303 |
+
)
|
304 |
source2_page = gr.Number(label="Page", scale=1)
|
305 |
with gr.Row():
|
306 |
+
doc_source3 = gr.Textbox(
|
307 |
+
label="Technical Reference 3",
|
308 |
+
lines=2,
|
309 |
+
container=True,
|
310 |
+
scale=20
|
311 |
+
)
|
312 |
source3_page = gr.Number(label="Page", scale=1)
|
313 |
+
|
314 |
with gr.Row():
|
315 |
+
msg = gr.Textbox(
|
316 |
+
placeholder="Enter your question about the metrology report...",
|
317 |
+
container=True,
|
318 |
+
label="Your Query"
|
319 |
+
)
|
320 |
with gr.Row():
|
321 |
+
submit_btn = gr.Button(
|
322 |
+
"Submit Query",
|
323 |
+
variant="primary"
|
324 |
+
)
|
325 |
+
clear_btn = gr.ClearButton(
|
326 |
+
[msg, chatbot],
|
327 |
+
value="Clear Conversation",
|
328 |
+
variant="secondary"
|
329 |
+
)
|
330 |
+
|
331 |
+
# Footer
|
332 |
+
gr.Markdown(
|
333 |
+
"""
|
334 |
+
---
|
335 |
+
### ℹ️ About MetroAssist AI
|
336 |
|
337 |
+
Developed for metrology professionals, engineers, and technicians who need precise
|
338 |
+
and reliable analysis of technical documents. Our tool uses advanced AI technology
|
339 |
+
to provide valuable insights and support decision-making in metrology.
|
340 |
+
|
341 |
+
**Specialized Features:**
|
342 |
+
- Detailed analysis of calibration certificates
|
343 |
+
- Interpretation of complex metrological data
|
344 |
+
- Verification of compliance with technical standards
|
345 |
+
- Decision support in metrological processes
|
346 |
+
- Uncertainty analysis and measurement traceability
|
347 |
+
- Quality control and measurement system analysis
|
348 |
+
|
349 |
+
*Version 1.0 - Updated 2024*
|
350 |
+
"""
|
351 |
+
)
|
352 |
+
|
353 |
# Event handlers
|
354 |
+
db_btn.click(
|
355 |
+
initialize_database,
|
356 |
+
inputs=[document],
|
357 |
+
outputs=[vector_db, db_progress]
|
358 |
+
)
|
359 |
+
|
360 |
+
qachain_btn.click(
|
361 |
+
initialize_LLM,
|
362 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
363 |
+
outputs=[qa_chain, llm_progress]
|
364 |
+
).then(
|
365 |
+
lambda: [None, "", 0, "", 0, "", 0],
|
366 |
+
inputs=None,
|
367 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
368 |
+
queue=False
|
369 |
+
)
|
370 |
+
|
371 |
+
msg.submit(
|
372 |
+
conversation,
|
373 |
+
inputs=[qa_chain, msg, chatbot],
|
374 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
375 |
+
queue=False
|
376 |
+
)
|
377 |
+
|
378 |
+
submit_btn.click(
|
379 |
+
conversation,
|
380 |
+
inputs=[qa_chain, msg, chatbot],
|
381 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
382 |
+
queue=False
|
383 |
+
)
|
384 |
+
|
385 |
+
clear_btn.click(
|
386 |
+
lambda: [None, "", 0, "", 0, "", 0],
|
387 |
+
inputs=None,
|
388 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
389 |
+
queue=False
|
390 |
+
)
|
391 |
|
392 |
demo.queue().launch(debug=True)
|
393 |
|