RAG-CHAT / app.py
DHEIVER's picture
Update app.py
0f44c27 verified
import gradio as gr
import os
from concurrent.futures import ThreadPoolExecutor
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from langchain_community.retrievers import BM25Retriever
from langchain.retrievers import EnsembleRetriever
# Environment variable for API token
api_token = os.getenv("API_TOKEN")
print(f"API Token loaded: {api_token[:5]}...") # Debug
if not api_token:
raise ValueError("Environment variable 'FirstToken' not set.")
# Available LLM models
list_llm = [
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.2",
"deepseek-ai/deepseek-llm-7b-chat"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# -----------------------------------------------------------------------------
# Document Loading and Splitting (Optimized with Threading)
# -----------------------------------------------------------------------------
def load_single_pdf(file_path):
"""Load a single PDF file."""
loader = PyPDFLoader(file_path)
return loader.load()
def load_doc(list_file_path, progress=gr.Progress()):
"""Load and split PDF documents into chunks with multi-threading."""
if not list_file_path:
raise ValueError("No files provided for processing.")
# Use ThreadPoolExecutor to parallelize PDF loading
with ThreadPoolExecutor() as executor:
pages = list(executor.map(load_single_pdf, list_file_path))
pages = [page for sublist in pages for page in sublist] # Flatten list
progress(0.5, "Splitting documents...")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2048, chunk_overlap=128) # Increased chunk size
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# -----------------------------------------------------------------------------
# Vector Database Creation (Optimized with Lightweight Embeddings)
# -----------------------------------------------------------------------------
def create_chromadb(splits, persist_directory="chroma_db", progress=gr.Progress()):
"""Create ChromaDB vector database with optimized embeddings."""
# Use a lighter embedding model
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
progress(0.7, "Creating vector database...")
chromadb = Chroma.from_documents(
documents=splits,
embedding=embeddings,
persist_directory=persist_directory
)
return chromadb
# -----------------------------------------------------------------------------
# Retrievers
# -----------------------------------------------------------------------------
def create_bm25_retriever(splits):
"""Create BM25 retriever from document splits."""
retriever = BM25Retriever.from_documents(splits)
retriever.k = 2 # Reduced to 2 documents for faster retrieval
return retriever
def create_ensemble_retriever(vector_db, bm25_retriever):
"""Create an ensemble retriever."""
return EnsembleRetriever(
retrievers=[vector_db.as_retriever(search_kwargs={"k": 2}), bm25_retriever], # Limit to 2 docs
weights=[0.7, 0.3]
)
# -----------------------------------------------------------------------------
# Initialize Database
# -----------------------------------------------------------------------------
def initialize_database(list_file_obj, progress=gr.Progress()):
"""Initialize the document database with error handling."""
try:
list_file_path = [x.name for x in list_file_obj if x is not None]
progress(0.1, "Loading documents...")
doc_splits = load_doc(list_file_path, progress)
chromadb = create_chromadb(doc_splits, progress=progress)
bm25_retriever = create_bm25_retriever(doc_splits)
ensemble_retriever = create_ensemble_retriever(chromadb, bm25_retriever)
progress(1.0, "Database creation complete!")
return ensemble_retriever, "Database created successfully!"
except Exception as e:
return None, f"Error initializing database: {str(e)}"
# -----------------------------------------------------------------------------
# Initialize LLM Chain
# -----------------------------------------------------------------------------
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever):
"""Initialize the language model chain."""
if retriever is None:
raise ValueError("Retriever is None. Please process documents first.")
try:
print(f"Initializing LLM: {llm_model} with token: {api_token[:5]}...")
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
task="text-generation"
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False
)
return qa_chain
except Exception as e:
raise RuntimeError(f"Failed to initialize LLM chain: {str(e)}")
# -----------------------------------------------------------------------------
# Initialize LLM
# -----------------------------------------------------------------------------
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
"""Initialize the Language Model."""
if retriever is None:
return None, "Error: No database initialized. Please process documents first."
try:
llm_name = list_llm[llm_option]
print(f"Selected LLM model: {llm_name}")
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, retriever)
return qa_chain, "Analysis Assistant initialized and ready!"
except Exception as e:
return None, f"Error initializing LLM: {str(e)}"
# -----------------------------------------------------------------------------
# Chat History Formatting
# -----------------------------------------------------------------------------
def format_chat_history(message, chat_history):
"""Format chat history for the model."""
return [f"User: {user_msg}\nAssistant: {bot_msg}" for user_msg, bot_msg in chat_history]
# -----------------------------------------------------------------------------
# Conversation Function
# -----------------------------------------------------------------------------
def conversation(qa_chain, message, history, lang):
"""Handle conversation and document analysis."""
if not qa_chain:
return None, gr.update(value="Assistant not initialized"), history, "", 0, "", 0, "", 0
lang_instruction = " (Responda em Português)" if lang == "pt" else " (Respond in English)"
query = message + lang_instruction
try:
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": query, "chat_history": formatted_chat_history})
answer = response["answer"].split("Helpful Answer:")[-1].strip() if "Helpful Answer:" in response["answer"] else response["answer"]
sources = response["source_documents"]
source_data = [("Unknown", 0)] * 3
for i, doc in enumerate(sources[:3]):
source_data[i] = (doc.page_content.strip(), doc.metadata["page"] + 1)
new_history = history + [(message, answer)]
return (
qa_chain, gr.update(value=""), new_history,
source_data[0][0], source_data[0][1],
source_data[1][0], source_data[1][1],
source_data[2][0], source_data[2][1]
)
except Exception as e:
return qa_chain, gr.update(value=f"Error: {str(e)}"), history, "", 0, "", 0, "", 0
# -----------------------------------------------------------------------------
# Gradio Demo
# -----------------------------------------------------------------------------
def demo():
"""Main demo application with enhanced layout."""
theme = gr.themes.Default(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate")
custom_css = """
.container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);}
.header {text-align: center; margin-bottom: 2rem;}
.header h1 {color: #1a365d; font-size: 2.5rem; margin-bottom: 0.5rem;}
.section {margin-bottom: 1.5rem; padding: 1rem; background: #f8fafc; border-radius: 8px;}
"""
with gr.Blocks(theme=theme, css=custom_css) as demo:
retriever = gr.State()
qa_chain = gr.State()
language = gr.State(value="en")
gr.HTML(
'<div class="header"><h1>MetroAssist AI</h1><p>Expert System for Metrology Report Analysis</p></div>'
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Document Processing")
with gr.Column(elem_classes="section"):
document = gr.Files(label="Metrology Reports (PDF)", file_count="multiple", file_types=["pdf"])
db_btn = gr.Button("Process Documents")
db_progress = gr.Textbox(value="Ready for documents", label="Processing Status")
gr.Markdown("## Model Configuration")
with gr.Column(elem_classes="section"):
llm_btn = gr.Radio(choices=list_llm_simple, label="Select AI Model", value=list_llm_simple[0], type="index")
language_btn = gr.Radio(choices=["English", "Português"], label="Response Language", value="English")
with gr.Accordion("Advanced Settings", open=False):
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Analysis Precision")
slider_maxtokens = gr.Slider(128, 2048, value=1024, step=128, label="Response Length") # Reduced max_tokens
slider_topk = gr.Slider(1, 5, value=3, step=1, label="Analysis Diversity") # Reduced range
qachain_btn = gr.Button("Initialize Assistant", interactive=False)
llm_progress = gr.Textbox(value="Not initialized", label="Assistant Status")
with gr.Column(scale=2):
gr.Markdown("## Interactive Analysis")
chatbot = gr.Chatbot(height=400, label="Analysis Conversation")
with gr.Row():
msg = gr.Textbox(placeholder="Ask about your metrology report...", label="Query")
submit_btn = gr.Button("Send")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
with gr.Accordion("Document References", open=False):
with gr.Row():
doc_source1, source1_page = gr.Textbox(label="Reference 1", lines=2), gr.Number(label="Page")
doc_source2, source2_page = gr.Textbox(label="Reference 2", lines=2), gr.Number(label="Page")
doc_source3, source3_page = gr.Textbox(label="Reference 3", lines=2), gr.Number(label="Page")
# Event Handlers
language_btn.change(lambda x: "en" if x == "English" else "pt", inputs=language_btn, outputs=language)
def enable_qachain_btn(retriever, status):
return gr.update(interactive=retriever is not None and "successfully" in status)
db_btn.click(
initialize_database,
inputs=[document],
outputs=[retriever, db_progress]
).then(
enable_qachain_btn,
inputs=[retriever, db_progress],
outputs=[qachain_btn]
)
qachain_btn.click(
initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever],
outputs=[qa_chain, llm_progress]
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot, language],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page]
)
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot, language],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page]
)
demo.launch(debug=True)
if __name__ == "__main__":
demo()