|
import gradio as gr |
|
import os |
|
from concurrent.futures import ThreadPoolExecutor |
|
from langchain_community.vectorstores import Chroma |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain_community.retrievers import BM25Retriever |
|
from langchain.retrievers import EnsembleRetriever |
|
|
|
|
|
api_token = os.getenv("API_TOKEN") |
|
print(f"API Token loaded: {api_token[:5]}...") |
|
if not api_token: |
|
raise ValueError("Environment variable 'FirstToken' not set.") |
|
|
|
|
|
list_llm = [ |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"mistralai/Mistral-7B-Instruct-v0.2", |
|
"deepseek-ai/deepseek-llm-7b-chat" |
|
] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
|
|
|
|
|
|
|
|
def load_single_pdf(file_path): |
|
"""Load a single PDF file.""" |
|
loader = PyPDFLoader(file_path) |
|
return loader.load() |
|
|
|
def load_doc(list_file_path, progress=gr.Progress()): |
|
"""Load and split PDF documents into chunks with multi-threading.""" |
|
if not list_file_path: |
|
raise ValueError("No files provided for processing.") |
|
|
|
|
|
with ThreadPoolExecutor() as executor: |
|
pages = list(executor.map(load_single_pdf, list_file_path)) |
|
pages = [page for sublist in pages for page in sublist] |
|
|
|
progress(0.5, "Splitting documents...") |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2048, chunk_overlap=128) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
|
|
|
|
def create_chromadb(splits, persist_directory="chroma_db", progress=gr.Progress()): |
|
"""Create ChromaDB vector database with optimized embeddings.""" |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
progress(0.7, "Creating vector database...") |
|
chromadb = Chroma.from_documents( |
|
documents=splits, |
|
embedding=embeddings, |
|
persist_directory=persist_directory |
|
) |
|
return chromadb |
|
|
|
|
|
|
|
|
|
def create_bm25_retriever(splits): |
|
"""Create BM25 retriever from document splits.""" |
|
retriever = BM25Retriever.from_documents(splits) |
|
retriever.k = 2 |
|
return retriever |
|
|
|
def create_ensemble_retriever(vector_db, bm25_retriever): |
|
"""Create an ensemble retriever.""" |
|
return EnsembleRetriever( |
|
retrievers=[vector_db.as_retriever(search_kwargs={"k": 2}), bm25_retriever], |
|
weights=[0.7, 0.3] |
|
) |
|
|
|
|
|
|
|
|
|
def initialize_database(list_file_obj, progress=gr.Progress()): |
|
"""Initialize the document database with error handling.""" |
|
try: |
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
progress(0.1, "Loading documents...") |
|
doc_splits = load_doc(list_file_path, progress) |
|
chromadb = create_chromadb(doc_splits, progress=progress) |
|
bm25_retriever = create_bm25_retriever(doc_splits) |
|
ensemble_retriever = create_ensemble_retriever(chromadb, bm25_retriever) |
|
progress(1.0, "Database creation complete!") |
|
return ensemble_retriever, "Database created successfully!" |
|
except Exception as e: |
|
return None, f"Error initializing database: {str(e)}" |
|
|
|
|
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever): |
|
"""Initialize the language model chain.""" |
|
if retriever is None: |
|
raise ValueError("Retriever is None. Please process documents first.") |
|
|
|
try: |
|
print(f"Initializing LLM: {llm_model} with token: {api_token[:5]}...") |
|
llm = HuggingFaceEndpoint( |
|
repo_id=llm_model, |
|
huggingfacehub_api_token=api_token, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
top_k=top_k, |
|
task="text-generation" |
|
) |
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key="answer", |
|
return_messages=True |
|
) |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False |
|
) |
|
return qa_chain |
|
except Exception as e: |
|
raise RuntimeError(f"Failed to initialize LLM chain: {str(e)}") |
|
|
|
|
|
|
|
|
|
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()): |
|
"""Initialize the Language Model.""" |
|
if retriever is None: |
|
return None, "Error: No database initialized. Please process documents first." |
|
|
|
try: |
|
llm_name = list_llm[llm_option] |
|
print(f"Selected LLM model: {llm_name}") |
|
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, retriever) |
|
return qa_chain, "Analysis Assistant initialized and ready!" |
|
except Exception as e: |
|
return None, f"Error initializing LLM: {str(e)}" |
|
|
|
|
|
|
|
|
|
def format_chat_history(message, chat_history): |
|
"""Format chat history for the model.""" |
|
return [f"User: {user_msg}\nAssistant: {bot_msg}" for user_msg, bot_msg in chat_history] |
|
|
|
|
|
|
|
|
|
def conversation(qa_chain, message, history, lang): |
|
"""Handle conversation and document analysis.""" |
|
if not qa_chain: |
|
return None, gr.update(value="Assistant not initialized"), history, "", 0, "", 0, "", 0 |
|
|
|
lang_instruction = " (Responda em Português)" if lang == "pt" else " (Respond in English)" |
|
query = message + lang_instruction |
|
|
|
try: |
|
formatted_chat_history = format_chat_history(message, history) |
|
response = qa_chain.invoke({"question": query, "chat_history": formatted_chat_history}) |
|
answer = response["answer"].split("Helpful Answer:")[-1].strip() if "Helpful Answer:" in response["answer"] else response["answer"] |
|
|
|
sources = response["source_documents"] |
|
source_data = [("Unknown", 0)] * 3 |
|
for i, doc in enumerate(sources[:3]): |
|
source_data[i] = (doc.page_content.strip(), doc.metadata["page"] + 1) |
|
|
|
new_history = history + [(message, answer)] |
|
return ( |
|
qa_chain, gr.update(value=""), new_history, |
|
source_data[0][0], source_data[0][1], |
|
source_data[1][0], source_data[1][1], |
|
source_data[2][0], source_data[2][1] |
|
) |
|
except Exception as e: |
|
return qa_chain, gr.update(value=f"Error: {str(e)}"), history, "", 0, "", 0, "", 0 |
|
|
|
|
|
|
|
|
|
def demo(): |
|
"""Main demo application with enhanced layout.""" |
|
theme = gr.themes.Default(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate") |
|
custom_css = """ |
|
.container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);} |
|
.header {text-align: center; margin-bottom: 2rem;} |
|
.header h1 {color: #1a365d; font-size: 2.5rem; margin-bottom: 0.5rem;} |
|
.section {margin-bottom: 1.5rem; padding: 1rem; background: #f8fafc; border-radius: 8px;} |
|
""" |
|
|
|
with gr.Blocks(theme=theme, css=custom_css) as demo: |
|
retriever = gr.State() |
|
qa_chain = gr.State() |
|
language = gr.State(value="en") |
|
|
|
gr.HTML( |
|
'<div class="header"><h1>MetroAssist AI</h1><p>Expert System for Metrology Report Analysis</p></div>' |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("## Document Processing") |
|
with gr.Column(elem_classes="section"): |
|
document = gr.Files(label="Metrology Reports (PDF)", file_count="multiple", file_types=["pdf"]) |
|
db_btn = gr.Button("Process Documents") |
|
db_progress = gr.Textbox(value="Ready for documents", label="Processing Status") |
|
|
|
gr.Markdown("## Model Configuration") |
|
with gr.Column(elem_classes="section"): |
|
llm_btn = gr.Radio(choices=list_llm_simple, label="Select AI Model", value=list_llm_simple[0], type="index") |
|
language_btn = gr.Radio(choices=["English", "Português"], label="Response Language", value="English") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Analysis Precision") |
|
slider_maxtokens = gr.Slider(128, 2048, value=1024, step=128, label="Response Length") |
|
slider_topk = gr.Slider(1, 5, value=3, step=1, label="Analysis Diversity") |
|
qachain_btn = gr.Button("Initialize Assistant", interactive=False) |
|
llm_progress = gr.Textbox(value="Not initialized", label="Assistant Status") |
|
|
|
with gr.Column(scale=2): |
|
gr.Markdown("## Interactive Analysis") |
|
chatbot = gr.Chatbot(height=400, label="Analysis Conversation") |
|
with gr.Row(): |
|
msg = gr.Textbox(placeholder="Ask about your metrology report...", label="Query") |
|
submit_btn = gr.Button("Send") |
|
clear_btn = gr.ClearButton([msg, chatbot], value="Clear") |
|
with gr.Accordion("Document References", open=False): |
|
with gr.Row(): |
|
doc_source1, source1_page = gr.Textbox(label="Reference 1", lines=2), gr.Number(label="Page") |
|
doc_source2, source2_page = gr.Textbox(label="Reference 2", lines=2), gr.Number(label="Page") |
|
doc_source3, source3_page = gr.Textbox(label="Reference 3", lines=2), gr.Number(label="Page") |
|
|
|
|
|
language_btn.change(lambda x: "en" if x == "English" else "pt", inputs=language_btn, outputs=language) |
|
|
|
def enable_qachain_btn(retriever, status): |
|
return gr.update(interactive=retriever is not None and "successfully" in status) |
|
|
|
db_btn.click( |
|
initialize_database, |
|
inputs=[document], |
|
outputs=[retriever, db_progress] |
|
).then( |
|
enable_qachain_btn, |
|
inputs=[retriever, db_progress], |
|
outputs=[qachain_btn] |
|
) |
|
|
|
qachain_btn.click( |
|
initialize_LLM, |
|
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever], |
|
outputs=[qa_chain, llm_progress] |
|
) |
|
|
|
submit_btn.click( |
|
conversation, |
|
inputs=[qa_chain, msg, chatbot, language], |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page] |
|
) |
|
msg.submit( |
|
conversation, |
|
inputs=[qa_chain, msg, chatbot, language], |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page] |
|
) |
|
|
|
demo.launch(debug=True) |
|
|
|
if __name__ == "__main__": |
|
demo() |