File size: 12,988 Bytes
15f3912 a3e638d 77fdcad 15f3912 d853d5a 15f3912 d853d5a b0159f0 1ac9fe7 15f3912 1ac9fe7 0f44c27 a3e638d 1ac9fe7 a3e638d 914f0c8 3bf61c2 a3e638d 3bf61c2 d853d5a 15f3912 d853d5a a3e638d d853d5a a3e638d 1ac9fe7 a3e638d 1ac9fe7 a3e638d 1ac9fe7 a3e638d 15f3912 d853d5a a3e638d d853d5a a3e638d d853d5a 1ac9fe7 d853d5a 1ac9fe7 a3e638d d853d5a a3e638d 1ac9fe7 a3e638d 1ac9fe7 d853d5a 1ac9fe7 a3e638d 1ac9fe7 a3e638d 1ac9fe7 a3e638d 1ac9fe7 d853d5a 1ac9fe7 a3e638d 77fdcad 1ac9fe7 77fdcad 1ac9fe7 3bf61c2 d853d5a 77fdcad 1ac9fe7 15f3912 d853d5a 15f3912 d853d5a 1ac9fe7 15f3912 d853d5a 1ac9fe7 e3a960d d853d5a 15f3912 d853d5a 1ac9fe7 e3a960d 0f27135 e3a960d d853d5a e3a960d d853d5a 15f3912 1ac9fe7 d853d5a 0f27135 1ac9fe7 0f27135 d853d5a 0f27135 e3a960d 0f27135 1ac9fe7 0f27135 1ac9fe7 d853d5a 1ac9fe7 0f27135 1ac9fe7 0f27135 1ac9fe7 a3e638d 1ac9fe7 d853d5a e3a960d 0f27135 1ac9fe7 0f27135 1ac9fe7 0f27135 1ac9fe7 914f0c8 e3a960d 1ac9fe7 77fdcad 15f3912 1ac9fe7 15f3912 1ac9fe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import gradio as gr
import os
from concurrent.futures import ThreadPoolExecutor
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from langchain_community.retrievers import BM25Retriever
from langchain.retrievers import EnsembleRetriever
# Environment variable for API token
api_token = os.getenv("API_TOKEN")
print(f"API Token loaded: {api_token[:5]}...") # Debug
if not api_token:
raise ValueError("Environment variable 'FirstToken' not set.")
# Available LLM models
list_llm = [
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.2",
"deepseek-ai/deepseek-llm-7b-chat"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# -----------------------------------------------------------------------------
# Document Loading and Splitting (Optimized with Threading)
# -----------------------------------------------------------------------------
def load_single_pdf(file_path):
"""Load a single PDF file."""
loader = PyPDFLoader(file_path)
return loader.load()
def load_doc(list_file_path, progress=gr.Progress()):
"""Load and split PDF documents into chunks with multi-threading."""
if not list_file_path:
raise ValueError("No files provided for processing.")
# Use ThreadPoolExecutor to parallelize PDF loading
with ThreadPoolExecutor() as executor:
pages = list(executor.map(load_single_pdf, list_file_path))
pages = [page for sublist in pages for page in sublist] # Flatten list
progress(0.5, "Splitting documents...")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2048, chunk_overlap=128) # Increased chunk size
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# -----------------------------------------------------------------------------
# Vector Database Creation (Optimized with Lightweight Embeddings)
# -----------------------------------------------------------------------------
def create_chromadb(splits, persist_directory="chroma_db", progress=gr.Progress()):
"""Create ChromaDB vector database with optimized embeddings."""
# Use a lighter embedding model
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
progress(0.7, "Creating vector database...")
chromadb = Chroma.from_documents(
documents=splits,
embedding=embeddings,
persist_directory=persist_directory
)
return chromadb
# -----------------------------------------------------------------------------
# Retrievers
# -----------------------------------------------------------------------------
def create_bm25_retriever(splits):
"""Create BM25 retriever from document splits."""
retriever = BM25Retriever.from_documents(splits)
retriever.k = 2 # Reduced to 2 documents for faster retrieval
return retriever
def create_ensemble_retriever(vector_db, bm25_retriever):
"""Create an ensemble retriever."""
return EnsembleRetriever(
retrievers=[vector_db.as_retriever(search_kwargs={"k": 2}), bm25_retriever], # Limit to 2 docs
weights=[0.7, 0.3]
)
# -----------------------------------------------------------------------------
# Initialize Database
# -----------------------------------------------------------------------------
def initialize_database(list_file_obj, progress=gr.Progress()):
"""Initialize the document database with error handling."""
try:
list_file_path = [x.name for x in list_file_obj if x is not None]
progress(0.1, "Loading documents...")
doc_splits = load_doc(list_file_path, progress)
chromadb = create_chromadb(doc_splits, progress=progress)
bm25_retriever = create_bm25_retriever(doc_splits)
ensemble_retriever = create_ensemble_retriever(chromadb, bm25_retriever)
progress(1.0, "Database creation complete!")
return ensemble_retriever, "Database created successfully!"
except Exception as e:
return None, f"Error initializing database: {str(e)}"
# -----------------------------------------------------------------------------
# Initialize LLM Chain
# -----------------------------------------------------------------------------
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever):
"""Initialize the language model chain."""
if retriever is None:
raise ValueError("Retriever is None. Please process documents first.")
try:
print(f"Initializing LLM: {llm_model} with token: {api_token[:5]}...")
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
task="text-generation"
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False
)
return qa_chain
except Exception as e:
raise RuntimeError(f"Failed to initialize LLM chain: {str(e)}")
# -----------------------------------------------------------------------------
# Initialize LLM
# -----------------------------------------------------------------------------
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
"""Initialize the Language Model."""
if retriever is None:
return None, "Error: No database initialized. Please process documents first."
try:
llm_name = list_llm[llm_option]
print(f"Selected LLM model: {llm_name}")
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, retriever)
return qa_chain, "Analysis Assistant initialized and ready!"
except Exception as e:
return None, f"Error initializing LLM: {str(e)}"
# -----------------------------------------------------------------------------
# Chat History Formatting
# -----------------------------------------------------------------------------
def format_chat_history(message, chat_history):
"""Format chat history for the model."""
return [f"User: {user_msg}\nAssistant: {bot_msg}" for user_msg, bot_msg in chat_history]
# -----------------------------------------------------------------------------
# Conversation Function
# -----------------------------------------------------------------------------
def conversation(qa_chain, message, history, lang):
"""Handle conversation and document analysis."""
if not qa_chain:
return None, gr.update(value="Assistant not initialized"), history, "", 0, "", 0, "", 0
lang_instruction = " (Responda em Português)" if lang == "pt" else " (Respond in English)"
query = message + lang_instruction
try:
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": query, "chat_history": formatted_chat_history})
answer = response["answer"].split("Helpful Answer:")[-1].strip() if "Helpful Answer:" in response["answer"] else response["answer"]
sources = response["source_documents"]
source_data = [("Unknown", 0)] * 3
for i, doc in enumerate(sources[:3]):
source_data[i] = (doc.page_content.strip(), doc.metadata["page"] + 1)
new_history = history + [(message, answer)]
return (
qa_chain, gr.update(value=""), new_history,
source_data[0][0], source_data[0][1],
source_data[1][0], source_data[1][1],
source_data[2][0], source_data[2][1]
)
except Exception as e:
return qa_chain, gr.update(value=f"Error: {str(e)}"), history, "", 0, "", 0, "", 0
# -----------------------------------------------------------------------------
# Gradio Demo
# -----------------------------------------------------------------------------
def demo():
"""Main demo application with enhanced layout."""
theme = gr.themes.Default(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate")
custom_css = """
.container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);}
.header {text-align: center; margin-bottom: 2rem;}
.header h1 {color: #1a365d; font-size: 2.5rem; margin-bottom: 0.5rem;}
.section {margin-bottom: 1.5rem; padding: 1rem; background: #f8fafc; border-radius: 8px;}
"""
with gr.Blocks(theme=theme, css=custom_css) as demo:
retriever = gr.State()
qa_chain = gr.State()
language = gr.State(value="en")
gr.HTML(
'<div class="header"><h1>MetroAssist AI</h1><p>Expert System for Metrology Report Analysis</p></div>'
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Document Processing")
with gr.Column(elem_classes="section"):
document = gr.Files(label="Metrology Reports (PDF)", file_count="multiple", file_types=["pdf"])
db_btn = gr.Button("Process Documents")
db_progress = gr.Textbox(value="Ready for documents", label="Processing Status")
gr.Markdown("## Model Configuration")
with gr.Column(elem_classes="section"):
llm_btn = gr.Radio(choices=list_llm_simple, label="Select AI Model", value=list_llm_simple[0], type="index")
language_btn = gr.Radio(choices=["English", "Português"], label="Response Language", value="English")
with gr.Accordion("Advanced Settings", open=False):
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Analysis Precision")
slider_maxtokens = gr.Slider(128, 2048, value=1024, step=128, label="Response Length") # Reduced max_tokens
slider_topk = gr.Slider(1, 5, value=3, step=1, label="Analysis Diversity") # Reduced range
qachain_btn = gr.Button("Initialize Assistant", interactive=False)
llm_progress = gr.Textbox(value="Not initialized", label="Assistant Status")
with gr.Column(scale=2):
gr.Markdown("## Interactive Analysis")
chatbot = gr.Chatbot(height=400, label="Analysis Conversation")
with gr.Row():
msg = gr.Textbox(placeholder="Ask about your metrology report...", label="Query")
submit_btn = gr.Button("Send")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
with gr.Accordion("Document References", open=False):
with gr.Row():
doc_source1, source1_page = gr.Textbox(label="Reference 1", lines=2), gr.Number(label="Page")
doc_source2, source2_page = gr.Textbox(label="Reference 2", lines=2), gr.Number(label="Page")
doc_source3, source3_page = gr.Textbox(label="Reference 3", lines=2), gr.Number(label="Page")
# Event Handlers
language_btn.change(lambda x: "en" if x == "English" else "pt", inputs=language_btn, outputs=language)
def enable_qachain_btn(retriever, status):
return gr.update(interactive=retriever is not None and "successfully" in status)
db_btn.click(
initialize_database,
inputs=[document],
outputs=[retriever, db_progress]
).then(
enable_qachain_btn,
inputs=[retriever, db_progress],
outputs=[qachain_btn]
)
qachain_btn.click(
initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever],
outputs=[qa_chain, llm_progress]
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot, language],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page]
)
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot, language],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page]
)
demo.launch(debug=True)
if __name__ == "__main__":
demo() |