File size: 12,988 Bytes
15f3912
 
a3e638d
77fdcad
15f3912
 
 
d853d5a
15f3912
d853d5a
b0159f0
1ac9fe7
15f3912
1ac9fe7
0f44c27
a3e638d
1ac9fe7
a3e638d
914f0c8
 
3bf61c2
a3e638d
3bf61c2
 
d853d5a
15f3912
 
d853d5a
a3e638d
d853d5a
a3e638d
 
 
 
 
1ac9fe7
a3e638d
1ac9fe7
 
 
a3e638d
 
 
 
1ac9fe7
a3e638d
 
 
 
15f3912
d853d5a
a3e638d
d853d5a
a3e638d
 
 
 
 
d853d5a
 
 
 
 
 
 
 
1ac9fe7
d853d5a
 
 
1ac9fe7
a3e638d
d853d5a
 
 
a3e638d
1ac9fe7
a3e638d
1ac9fe7
d853d5a
 
 
 
 
 
1ac9fe7
 
 
a3e638d
1ac9fe7
a3e638d
1ac9fe7
 
a3e638d
1ac9fe7
 
 
d853d5a
 
 
 
1ac9fe7
a3e638d
77fdcad
 
 
1ac9fe7
77fdcad
1ac9fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bf61c2
d853d5a
 
 
 
 
77fdcad
 
 
1ac9fe7
 
 
 
 
 
 
15f3912
d853d5a
 
 
15f3912
d853d5a
1ac9fe7
15f3912
d853d5a
 
 
 
 
1ac9fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a960d
d853d5a
 
 
15f3912
d853d5a
1ac9fe7
e3a960d
0f27135
 
 
 
e3a960d
d853d5a
e3a960d
d853d5a
15f3912
1ac9fe7
d853d5a
0f27135
1ac9fe7
0f27135
d853d5a
0f27135
e3a960d
0f27135
 
1ac9fe7
0f27135
1ac9fe7
d853d5a
1ac9fe7
0f27135
1ac9fe7
 
0f27135
1ac9fe7
a3e638d
 
 
1ac9fe7
d853d5a
e3a960d
0f27135
1ac9fe7
0f27135
1ac9fe7
 
 
0f27135
 
1ac9fe7
 
 
914f0c8
e3a960d
1ac9fe7
77fdcad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f3912
1ac9fe7
15f3912
 
1ac9fe7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import gradio as gr
import os
from concurrent.futures import ThreadPoolExecutor
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from langchain_community.retrievers import BM25Retriever
from langchain.retrievers import EnsembleRetriever

# Environment variable for API token
api_token = os.getenv("API_TOKEN")
print(f"API Token loaded: {api_token[:5]}...")  # Debug
if not api_token:
    raise ValueError("Environment variable 'FirstToken' not set.")

# Available LLM models
list_llm = [
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mistral-7B-Instruct-v0.2",
    "deepseek-ai/deepseek-llm-7b-chat"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# -----------------------------------------------------------------------------
# Document Loading and Splitting (Optimized with Threading)
# -----------------------------------------------------------------------------
def load_single_pdf(file_path):
    """Load a single PDF file."""
    loader = PyPDFLoader(file_path)
    return loader.load()

def load_doc(list_file_path, progress=gr.Progress()):
    """Load and split PDF documents into chunks with multi-threading."""
    if not list_file_path:
        raise ValueError("No files provided for processing.")
    
    # Use ThreadPoolExecutor to parallelize PDF loading
    with ThreadPoolExecutor() as executor:
        pages = list(executor.map(load_single_pdf, list_file_path))
        pages = [page for sublist in pages for page in sublist]  # Flatten list
    
    progress(0.5, "Splitting documents...")
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=2048, chunk_overlap=128)  # Increased chunk size
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# -----------------------------------------------------------------------------
# Vector Database Creation (Optimized with Lightweight Embeddings)
# -----------------------------------------------------------------------------
def create_chromadb(splits, persist_directory="chroma_db", progress=gr.Progress()):
    """Create ChromaDB vector database with optimized embeddings."""
    # Use a lighter embedding model
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    progress(0.7, "Creating vector database...")
    chromadb = Chroma.from_documents(
        documents=splits,
        embedding=embeddings,
        persist_directory=persist_directory
    )
    return chromadb

# -----------------------------------------------------------------------------
# Retrievers
# -----------------------------------------------------------------------------
def create_bm25_retriever(splits):
    """Create BM25 retriever from document splits."""
    retriever = BM25Retriever.from_documents(splits)
    retriever.k = 2  # Reduced to 2 documents for faster retrieval
    return retriever

def create_ensemble_retriever(vector_db, bm25_retriever):
    """Create an ensemble retriever."""
    return EnsembleRetriever(
        retrievers=[vector_db.as_retriever(search_kwargs={"k": 2}), bm25_retriever],  # Limit to 2 docs
        weights=[0.7, 0.3]
    )

# -----------------------------------------------------------------------------
# Initialize Database
# -----------------------------------------------------------------------------
def initialize_database(list_file_obj, progress=gr.Progress()):
    """Initialize the document database with error handling."""
    try:
        list_file_path = [x.name for x in list_file_obj if x is not None]
        progress(0.1, "Loading documents...")
        doc_splits = load_doc(list_file_path, progress)
        chromadb = create_chromadb(doc_splits, progress=progress)
        bm25_retriever = create_bm25_retriever(doc_splits)
        ensemble_retriever = create_ensemble_retriever(chromadb, bm25_retriever)
        progress(1.0, "Database creation complete!")
        return ensemble_retriever, "Database created successfully!"
    except Exception as e:
        return None, f"Error initializing database: {str(e)}"

# -----------------------------------------------------------------------------
# Initialize LLM Chain
# -----------------------------------------------------------------------------
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever):
    """Initialize the language model chain."""
    if retriever is None:
        raise ValueError("Retriever is None. Please process documents first.")
    
    try:
        print(f"Initializing LLM: {llm_model} with token: {api_token[:5]}...")
        llm = HuggingFaceEndpoint(
            repo_id=llm_model,
            huggingfacehub_api_token=api_token,
            temperature=temperature,
            max_new_tokens=max_tokens,
            top_k=top_k,
            task="text-generation"
        )
        memory = ConversationBufferMemory(
            memory_key="chat_history",
            output_key="answer",
            return_messages=True
        )
        qa_chain = ConversationalRetrievalChain.from_llm(
            llm=llm,
            retriever=retriever,
            chain_type="stuff",
            memory=memory,
            return_source_documents=True,
            verbose=False
        )
        return qa_chain
    except Exception as e:
        raise RuntimeError(f"Failed to initialize LLM chain: {str(e)}")

# -----------------------------------------------------------------------------
# Initialize LLM
# -----------------------------------------------------------------------------
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
    """Initialize the Language Model."""
    if retriever is None:
        return None, "Error: No database initialized. Please process documents first."
    
    try:
        llm_name = list_llm[llm_option]
        print(f"Selected LLM model: {llm_name}")
        qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, retriever)
        return qa_chain, "Analysis Assistant initialized and ready!"
    except Exception as e:
        return None, f"Error initializing LLM: {str(e)}"

# -----------------------------------------------------------------------------
# Chat History Formatting
# -----------------------------------------------------------------------------
def format_chat_history(message, chat_history):
    """Format chat history for the model."""
    return [f"User: {user_msg}\nAssistant: {bot_msg}" for user_msg, bot_msg in chat_history]

# -----------------------------------------------------------------------------
# Conversation Function
# -----------------------------------------------------------------------------
def conversation(qa_chain, message, history, lang):
    """Handle conversation and document analysis."""
    if not qa_chain:
        return None, gr.update(value="Assistant not initialized"), history, "", 0, "", 0, "", 0

    lang_instruction = " (Responda em Português)" if lang == "pt" else " (Respond in English)"
    query = message + lang_instruction
    
    try:
        formatted_chat_history = format_chat_history(message, history)
        response = qa_chain.invoke({"question": query, "chat_history": formatted_chat_history})
        answer = response["answer"].split("Helpful Answer:")[-1].strip() if "Helpful Answer:" in response["answer"] else response["answer"]

        sources = response["source_documents"]
        source_data = [("Unknown", 0)] * 3
        for i, doc in enumerate(sources[:3]):
            source_data[i] = (doc.page_content.strip(), doc.metadata["page"] + 1)

        new_history = history + [(message, answer)]
        return (
            qa_chain, gr.update(value=""), new_history,
            source_data[0][0], source_data[0][1],
            source_data[1][0], source_data[1][1],
            source_data[2][0], source_data[2][1]
        )
    except Exception as e:
        return qa_chain, gr.update(value=f"Error: {str(e)}"), history, "", 0, "", 0, "", 0

# -----------------------------------------------------------------------------
# Gradio Demo
# -----------------------------------------------------------------------------
def demo():
    """Main demo application with enhanced layout."""
    theme = gr.themes.Default(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate")
    custom_css = """
        .container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);}
        .header {text-align: center; margin-bottom: 2rem;}
        .header h1 {color: #1a365d; font-size: 2.5rem; margin-bottom: 0.5rem;}
        .section {margin-bottom: 1.5rem; padding: 1rem; background: #f8fafc; border-radius: 8px;}
    """

    with gr.Blocks(theme=theme, css=custom_css) as demo:
        retriever = gr.State()
        qa_chain = gr.State()
        language = gr.State(value="en")

        gr.HTML(
            '<div class="header"><h1>MetroAssist AI</h1><p>Expert System for Metrology Report Analysis</p></div>'
        )

        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("## Document Processing")
                with gr.Column(elem_classes="section"):
                    document = gr.Files(label="Metrology Reports (PDF)", file_count="multiple", file_types=["pdf"])
                    db_btn = gr.Button("Process Documents")
                    db_progress = gr.Textbox(value="Ready for documents", label="Processing Status")

                gr.Markdown("## Model Configuration")
                with gr.Column(elem_classes="section"):
                    llm_btn = gr.Radio(choices=list_llm_simple, label="Select AI Model", value=list_llm_simple[0], type="index")
                    language_btn = gr.Radio(choices=["English", "Português"], label="Response Language", value="English")
                    with gr.Accordion("Advanced Settings", open=False):
                        slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Analysis Precision")
                        slider_maxtokens = gr.Slider(128, 2048, value=1024, step=128, label="Response Length")  # Reduced max_tokens
                        slider_topk = gr.Slider(1, 5, value=3, step=1, label="Analysis Diversity")  # Reduced range
                    qachain_btn = gr.Button("Initialize Assistant", interactive=False)
                    llm_progress = gr.Textbox(value="Not initialized", label="Assistant Status")

            with gr.Column(scale=2):
                gr.Markdown("## Interactive Analysis")
                chatbot = gr.Chatbot(height=400, label="Analysis Conversation")
                with gr.Row():
                    msg = gr.Textbox(placeholder="Ask about your metrology report...", label="Query")
                    submit_btn = gr.Button("Send")
                    clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
                with gr.Accordion("Document References", open=False):
                    with gr.Row():
                        doc_source1, source1_page = gr.Textbox(label="Reference 1", lines=2), gr.Number(label="Page")
                        doc_source2, source2_page = gr.Textbox(label="Reference 2", lines=2), gr.Number(label="Page")
                        doc_source3, source3_page = gr.Textbox(label="Reference 3", lines=2), gr.Number(label="Page")

        # Event Handlers
        language_btn.change(lambda x: "en" if x == "English" else "pt", inputs=language_btn, outputs=language)

        def enable_qachain_btn(retriever, status):
            return gr.update(interactive=retriever is not None and "successfully" in status)

        db_btn.click(
            initialize_database,
            inputs=[document],
            outputs=[retriever, db_progress]
        ).then(
            enable_qachain_btn,
            inputs=[retriever, db_progress],
            outputs=[qachain_btn]
        )

        qachain_btn.click(
            initialize_LLM,
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever],
            outputs=[qa_chain, llm_progress]
        )

        submit_btn.click(
            conversation,
            inputs=[qa_chain, msg, chatbot, language],
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page]
        )
        msg.submit(
            conversation,
            inputs=[qa_chain, msg, chatbot, language],
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page]
        )

    demo.launch(debug=True)

if __name__ == "__main__":
    demo()