File size: 2,671 Bytes
246c955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754b6c6
246c955
f8c0662
246c955
f8c0662
 
 
246c955
 
754b6c6
246c955
 
 
754b6c6
 
 
246c955
 
 
 
 
 
 
 
 
 
754b6c6
246c955
 
 
 
754b6c6
246c955
 
f8c0662
246c955
 
f8c0662
 
 
246c955
754b6c6
 
246c955
754b6c6
246c955
 
754b6c6
 
246c955
754b6c6
 
246c955
754b6c6
 
246c955
754b6c6
 
 
246c955
715d266
246c955
f8c0662
 
641c113
 
01b125e
c00334e
 
2d1141c
246c955
641c113
754b6c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr
import pandas as pd
import numpy as np
import json
from matplotlib import pyplot as plt

f = open('scaler.json')
scaler = json.load(f)

TIME_STEPS = 288

# Generated training sequences for use in the model.
def create_sequences(values, time_steps=TIME_STEPS):
    output = []
    for i in range(len(values) - time_steps + 1):
        output.append(values[i : (i + time_steps)])
    return np.stack(output)


def normalize_data(data):
    df_test_value = (data - scaler["mean"]) / scaler["std"]
    return df_test_value


def plot_test_data(df_test_value):
    fig, ax = plt.subplots(figsize=(12, 6))
    df_test_value.plot(legend=False, ax=ax)
    ax.set_xlabel("Time")
    ax.set_ylabel("Value")
    ax.set_title("Input Test Data")
    return fig


def get_anomalies(df_test_value):
    # Create sequences from test values.
    x_test = create_sequences(df_test_value.values)

    # Load the pre-trained model.
    model = load_pretrained_model()

    # Get test MAE loss.
    x_test_pred = model.predict(x_test)
    test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
    test_mae_loss = test_mae_loss.reshape((-1))

    # Detect all the samples which are anomalies.
    anomalies = test_mae_loss > scaler["threshold"]
    return anomalies


def plot_anomalies(df_test_value, data, anomalies):
    # data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies
    anomalous_data_indices = []
    for data_idx in range(TIME_STEPS - 1, len(df_test_value) - TIME_STEPS + 1):
        if np.all(anomalies[data_idx -         TIME_STEPS + 1 : data_idx]):
            anomalous_data_indices.append(data_idx)
    df_subset = data.iloc[anomalous_data_indices]
    fig, ax = plt.subplots(figsize=(12, 6))
    data.plot(legend=False, ax=ax)
    df_subset.plot(legend=False, ax=ax, color="r")
    ax.set_xlabel("Time")
    ax.set_ylabel("Value")
    ax.set_title("Anomalous Data Points")
    return fig


def master(file):
    # Read file
    data = pd.read_csv(file, parse_dates=True, index_col="timestamp")
    df_test_value = normalize_data(data)
    
    # Plot input test data
    plot1 = plot_test_data(df_test_value)
    
    # Predict anomalies
    anomalies = get_anomalies(df_test_value)
    
    # Plot anomalous data points
    plot2 = plot_anomalies(df_test_value, data, anomalies)
    
    return plot1, plot2


outputs = gr.outputs.Image()

iface = gr.Interface(
    fn=master,
    inputs=gr.inputs.File(label="CSV File"),
    outputs=outputs,
    examples=["art_daily_jumpsup.csv"],
    title="Timeseries Anomaly Detection Using an Autoencoder",
    description="Anomaly detection of timeseries data."
)

iface.launch()