File size: 4,833 Bytes
8bf6bdc
 
 
 
 
 
4375218
8bf6bdc
 
 
 
 
 
4375218
8bf6bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4375218
8bf6bdc
 
 
 
 
 
 
 
4375218
 
8bf6bdc
 
4375218
8bf6bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4375218
8bf6bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import numpy as np
import torch
from diffusers import UniPCMultistepScheduler
from PIL import Image

from diffusion_webui.controlnet_inpaint.canny_inpaint import controlnet_canny
from diffusion_webui.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import (
    StableDiffusionControlNetInpaintPipeline,
)

stable_inpaint_model_list = [
    "runwayml/stable-diffusion-inpainting",
    "stabilityai/stable-diffusion-2-inpainting",
]

controlnet_model_list = [
    "lllyasviel/sd-controlnet-canny",
]

prompt_list = [
    "a red panda sitting on a bench",
]

negative_prompt_list = [
    "bad, ugly",
]


def load_img(image_path: str):
    image = Image.open(image_path)
    image = np.array(image)
    image = Image.fromarray(image)

    return image


def stable_diffusion_inpiant_controlnet_canny(
    dict_image: str,
    stable_model_path: str,
    controlnet_model_path: str,
    prompt: str,
    negative_prompt: str,
    controlnet_conditioning_scale: str,
    guidance_scale: int,
    num_inference_steps: int,
):
    normal_image = dict_image["image"].convert("RGB").resize((512, 512))
    mask_image = dict_image["mask"].convert("RGB").resize((512, 512))

    controlnet, control_image = controlnet_canny(
        dict_image=dict_image,
        controlnet_model_path=controlnet_model_path,
    )

    pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
        pretrained_model_name_or_path=stable_model_path,
        controlnet=controlnet,
        torch_dtype=torch.float16,
    )
    pipe.to("cuda")
    pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
    pipe.enable_xformers_memory_efficient_attention()

    generator = torch.manual_seed(0)

    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        generator=generator,
        image=normal_image,
        control_image=control_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        guidance_scale=guidance_scale,
        mask_image=mask_image,
    ).images

    return output[0]


def stable_diffusion_inpiant_controlnet_canny_app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                inpaint_image_file = gr.Image(
                    source="upload",
                    tool="sketch",
                    elem_id="image_upload",
                    type="pil",
                    label="Upload",
                )

                inpaint_model_id = gr.Dropdown(
                    choices=stable_inpaint_model_list,
                    value=stable_inpaint_model_list[0],
                    label="Inpaint Model Id",
                )

                inpaint_controlnet_model_id = gr.Dropdown(
                    choices=controlnet_model_list,
                    value=controlnet_model_list[0],
                    label="ControlNet Model Id",
                )

                inpaint_prompt = gr.Textbox(
                    lines=1, value=prompt_list[0], label="Prompt"
                )

                inpaint_negative_prompt = gr.Textbox(
                    lines=1,
                    value=negative_prompt_list[0],
                    label="Negative Prompt",
                )

                with gr.Accordion("Advanced Options", open=False):
                    controlnet_conditioning_scale = gr.Slider(
                        minimum=0.1,
                        maximum=1,
                        step=0.1,
                        value=0.5,
                        label="ControlNet Conditioning Scale",
                    )

                    inpaint_guidance_scale = gr.Slider(
                        minimum=0.1,
                        maximum=15,
                        step=0.1,
                        value=7.5,
                        label="Guidance Scale",
                    )

                    inpaint_num_inference_step = gr.Slider(
                        minimum=1,
                        maximum=100,
                        step=1,
                        value=50,
                        label="Num Inference Step",
                    )

                inpaint_predict = gr.Button(value="Generator")

            with gr.Column():
                output_image = gr.Image(label="Outputs")

        inpaint_predict.click(
            fn=stable_diffusion_inpiant_controlnet_canny,
            inputs=[
                inpaint_image_file,
                inpaint_model_id,
                inpaint_controlnet_model_id,
                inpaint_prompt,
                inpaint_negative_prompt,
                controlnet_conditioning_scale,
                inpaint_guidance_scale,
                inpaint_num_inference_step,
            ],
            outputs=output_image,
        )