Spaces:
Runtime error
Runtime error
Commit
·
3eb63d1
1
Parent(s):
1832b83
Update app.py
Browse files
app.py
CHANGED
@@ -1,105 +1,105 @@
|
|
1 |
# import gradio as gr
|
2 |
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
#----------------------------------------------------------------------------------------------------------------------------
|
8 |
-
# !pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
|
9 |
-
# import os
|
10 |
-
import torch
|
11 |
-
from datasets import load_dataset
|
12 |
-
from transformers import (
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
)
|
21 |
-
from peft import LoraConfig, PeftModel
|
22 |
-
from trl import SFTTrainer
|
23 |
-
|
24 |
-
|
25 |
-
# LoRA attention dimension
|
26 |
-
lora_r = 64
|
27 |
-
|
28 |
-
# Alpha parameter for LoRA scaling
|
29 |
-
lora_alpha = 16
|
30 |
-
|
31 |
-
# Dropout probability for LoRA layers
|
32 |
-
lora_dropout = 0.1
|
33 |
-
|
34 |
-
################################################################################
|
35 |
-
# bitsandbytes parameters
|
36 |
-
################################################################################
|
37 |
-
|
38 |
-
# Activate 4-bit precision base model loading
|
39 |
-
use_4bit = True
|
40 |
-
|
41 |
-
# Compute dtype for 4-bit base models
|
42 |
-
bnb_4bit_compute_dtype = "float16"
|
43 |
-
|
44 |
-
# Quantization type (fp4 or nf4)
|
45 |
-
bnb_4bit_quant_type = "nf4"
|
46 |
-
|
47 |
-
# Activate nested quantization for 4-bit base models (double quantization)
|
48 |
-
use_nested_quant = False
|
49 |
-
|
50 |
-
# Load the entire model on the GPU 0
|
51 |
-
device_map = {"": 0}
|
52 |
-
|
53 |
-
#----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
54 |
-
model_name = "DR-DRR/Model_001"
|
55 |
-
model_basename = "pytorch_model-00001-of-00002.bin" # the model is in bin format
|
56 |
-
|
57 |
-
#-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
58 |
-
|
59 |
-
# Load tokenizer and model with QLoRA configuration
|
60 |
-
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
61 |
-
|
62 |
-
bnb_config = BitsAndBytesConfig(
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
)
|
68 |
-
|
69 |
-
# Check GPU compatibility with bfloat16
|
70 |
-
if compute_dtype == torch.float16 and use_4bit:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
# Load base model
|
78 |
-
model = AutoModelForCausalLM.from_pretrained(
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
)
|
83 |
-
model.config.use_cache = False
|
84 |
-
model.config.pretraining_tp = 1
|
85 |
-
|
86 |
-
# Load LLaMA tokenizer
|
87 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
88 |
-
tokenizer.pad_token = tokenizer.eos_token
|
89 |
-
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
|
90 |
-
|
91 |
-
# Load LoRA configuration
|
92 |
-
peft_config = LoraConfig(
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
)
|
99 |
-
|
100 |
-
#---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
101 |
-
# Ignore warnings
|
102 |
-
logging.set_verbosity(logging.CRITICAL)
|
103 |
|
104 |
# Run text generation pipeline with our next model
|
105 |
# prompt = "What is a large language model?"
|
@@ -109,16 +109,6 @@ logging.set_verbosity(logging.CRITICAL)
|
|
109 |
|
110 |
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
111 |
# Ignore warnings
|
112 |
-
logging.set_verbosity(logging.CRITICAL)
|
113 |
-
|
114 |
-
# Run text generation pipeline with our next model
|
115 |
-
# prompt = "What is a large language model?"
|
116 |
-
# pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
117 |
-
# result = pipe(f"<s>[INST] {prompt} [/INST]")
|
118 |
-
# print(result[0]['generated_text'])
|
119 |
-
|
120 |
-
#---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
121 |
-
# Ignore warnings
|
122 |
# logging.set_verbosity(logging.CRITICAL)
|
123 |
|
124 |
# Run text generation pipeline with our next model
|
@@ -129,13 +119,13 @@ logging.set_verbosity(logging.CRITICAL)
|
|
129 |
|
130 |
|
131 |
def generate_text(prompt):
|
132 |
-
# output = model.generate(input_text)
|
133 |
-
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
134 |
-
result = pipe(f"<s>[INST] {prompt} [/INST]")
|
135 |
-
# prompt = "What is a large language model?"
|
136 |
-
# input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
137 |
|
138 |
-
|
139 |
# result = tokenizer.decode(output[0], skip_special_tokens=True)
|
140 |
return result
|
141 |
|
|
|
1 |
# import gradio as gr
|
2 |
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
+
from gpt4all import GPT4All
|
5 |
+
model = GPT4All("wizardlm-13b-v1.1-superhot-8k.ggmlv3.q4_0.bin")
|
6 |
+
|
7 |
+
# #----------------------------------------------------------------------------------------------------------------------------
|
8 |
+
# # !pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
|
9 |
+
# # import os
|
10 |
+
# import torch
|
11 |
+
# from datasets import load_dataset
|
12 |
+
# from transformers import (
|
13 |
+
# AutoModelForCausalLM,
|
14 |
+
# AutoTokenizer,
|
15 |
+
# BitsAndBytesConfig,
|
16 |
+
# HfArgumentParser,
|
17 |
+
# TrainingArguments,
|
18 |
+
# pipeline,
|
19 |
+
# logging,
|
20 |
+
# )
|
21 |
+
# from peft import LoraConfig, PeftModel
|
22 |
+
# from trl import SFTTrainer
|
23 |
+
# # -----------------------------------------------------------------------------------------------------------------------------------------------------------------
|
24 |
+
|
25 |
+
# # LoRA attention dimension
|
26 |
+
# lora_r = 64
|
27 |
+
|
28 |
+
# # Alpha parameter for LoRA scaling
|
29 |
+
# lora_alpha = 16
|
30 |
+
|
31 |
+
# # Dropout probability for LoRA layers
|
32 |
+
# lora_dropout = 0.1
|
33 |
+
|
34 |
+
# ################################################################################
|
35 |
+
# # bitsandbytes parameters
|
36 |
+
# ################################################################################
|
37 |
+
|
38 |
+
# # Activate 4-bit precision base model loading
|
39 |
+
# use_4bit = True
|
40 |
+
|
41 |
+
# # Compute dtype for 4-bit base models
|
42 |
+
# bnb_4bit_compute_dtype = "float16"
|
43 |
+
|
44 |
+
# # Quantization type (fp4 or nf4)
|
45 |
+
# bnb_4bit_quant_type = "nf4"
|
46 |
+
|
47 |
+
# # Activate nested quantization for 4-bit base models (double quantization)
|
48 |
+
# use_nested_quant = False
|
49 |
+
|
50 |
+
# # Load the entire model on the GPU 0
|
51 |
+
# device_map = {"": 0}
|
52 |
+
|
53 |
+
# #----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
54 |
+
# model_name = "DR-DRR/Model_001"
|
55 |
+
# model_basename = "pytorch_model-00001-of-00002.bin" # the model is in bin format
|
56 |
+
|
57 |
+
# #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
58 |
+
|
59 |
+
# # Load tokenizer and model with QLoRA configuration
|
60 |
+
# compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
61 |
+
|
62 |
+
# bnb_config = BitsAndBytesConfig(
|
63 |
+
# load_in_4bit=use_4bit,
|
64 |
+
# bnb_4bit_quant_type=bnb_4bit_quant_type,
|
65 |
+
# bnb_4bit_compute_dtype=compute_dtype,
|
66 |
+
# bnb_4bit_use_double_quant=use_nested_quant,
|
67 |
+
# )
|
68 |
+
|
69 |
+
# # Check GPU compatibility with bfloat16
|
70 |
+
# if compute_dtype == torch.float16 and use_4bit:
|
71 |
+
# major, _ = torch.cuda.get_device_capability()
|
72 |
+
# if major >= 8:
|
73 |
+
# print("=" * 80)
|
74 |
+
# print("Your GPU supports bfloat16: accelerate training with bf16=True")
|
75 |
+
# print("=" * 80)
|
76 |
+
|
77 |
+
# # Load base model
|
78 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
79 |
+
# model_name,
|
80 |
+
# quantization_config=bnb_config,
|
81 |
+
# device_map=device_map
|
82 |
+
# )
|
83 |
+
# model.config.use_cache = False
|
84 |
+
# model.config.pretraining_tp = 1
|
85 |
+
|
86 |
+
# # Load LLaMA tokenizer
|
87 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
88 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
89 |
+
# tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
|
90 |
+
|
91 |
+
# # Load LoRA configuration
|
92 |
+
# peft_config = LoraConfig(
|
93 |
+
# lora_alpha=lora_alpha,
|
94 |
+
# lora_dropout=lora_dropout,
|
95 |
+
# r=lora_r,
|
96 |
+
# bias="none",
|
97 |
+
# task_type="CAUSAL_LM",
|
98 |
+
# )
|
99 |
+
|
100 |
+
# #---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
101 |
+
# # Ignore warnings
|
102 |
+
# logging.set_verbosity(logging.CRITICAL)
|
103 |
|
104 |
# Run text generation pipeline with our next model
|
105 |
# prompt = "What is a large language model?"
|
|
|
109 |
|
110 |
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
111 |
# Ignore warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# logging.set_verbosity(logging.CRITICAL)
|
113 |
|
114 |
# Run text generation pipeline with our next model
|
|
|
119 |
|
120 |
|
121 |
def generate_text(prompt):
|
122 |
+
# # output = model.generate(input_text)
|
123 |
+
# pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
124 |
+
# result = pipe(f"<s>[INST] {prompt} [/INST]")
|
125 |
+
# # prompt = "What is a large language model?"
|
126 |
+
# # input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
127 |
|
128 |
+
output = model.generate(input_ids, max_length=200, num_return_sequences=1)
|
129 |
# result = tokenizer.decode(output[0], skip_special_tokens=True)
|
130 |
return result
|
131 |
|