Spaces:
Runtime error
Runtime error
File size: 7,486 Bytes
d763e2a 78cc4b7 ee9ec43 9cbeac4 5affbbc 9cbeac4 5affbbc ee9ec43 9cbeac4 d763e2a 5affbbc cb9a228 5affbbc 2f307bd 9cbeac4 ee9ec43 7c46075 5affbbc 952088c cb9a228 5affbbc cb9a228 5affbbc 1ab11d4 b5fc718 1ab11d4 5affbbc 1ab11d4 5affbbc 1ab11d4 5affbbc 1ab11d4 b5fc718 5affbbc b5fc718 5affbbc 9cbeac4 ee9ec43 9cbeac4 ee9ec43 9cbeac4 5affbbc 9cbeac4 5affbbc 9cbeac4 5affbbc 9cbeac4 1ab11d4 9cbeac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import os
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import nltk, spacy, gensim
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import CountVectorizer
from pprint import pprint
def concat_comments(sup_comment: list[str], comment: list[str]) -> list[str]:
format_s = "{s}\n{c}"
return [
format_s.format(s=s, c=c) for s, c in zip(sup_comment, comment)
]
def sent_to_words(sentences):
for sentence in sentences:
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'], nlp=None): #'NOUN', 'ADJ', 'VERB', 'ADV'
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append(" ".join([
token.lemma_ if token.lemma_ not in ['-PRON-'] else '' for token in doc if token.pos_ in allowed_postags
]))
return texts_out
def main(choose_context):
df = pd.read_csv('./data/results.csv', index_col=0)
print(choose_context)
if choose_context == 'comment':
data = df.comment
elif choose_context == 'sup comment':
data = df.sup_comment
elif choose_context == 'sup comment + comment':
data = concat_comments(df.sup_comment, df.comment)
data_words = list(sent_to_words(data))
print('downloading en_core_web_sm')
os.system("python -m spacy download en_core_web_sm")
print('en_core_web_sm downloaded')
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
data_lemmatized = lemmatization(data_words, allowed_postags=["NOUN", "ADJ"], nlp=nlp) #select noun and verb
vectorizer = CountVectorizer(
analyzer='word',
min_df=10,
stop_words='english',
lowercase=True,
token_pattern='[a-zA-Z0-9]{3,}'
)
data_vectorized = vectorizer.fit_transform(data_lemmatized)
lda_model = LatentDirichletAllocation(
n_components=5,
max_iter=10,
learning_method='online',
random_state=100,
batch_size=128,
evaluate_every = -1,
n_jobs = -1,
)
lda_output = lda_model.fit_transform(data_vectorized)
print(lda_model) # Model attributes
# Log Likelyhood: Higher the better
print("Log Likelihood: ", lda_model.score(data_vectorized))
# Perplexity: Lower the better. Perplexity = exp(-1. * log-likelihood per word)
print("Perplexity: ", lda_model.perplexity(data_vectorized))
# See model parameters
pprint(lda_model.get_params())
best_lda_model = lda_model
lda_output = best_lda_model.transform(data_vectorized)
topicnames = ["Topic" + str(i) for i in range(best_lda_model.n_components)]
docnames = ["Doc" + str(i) for i in range(len(data))]
df_document_topic = pd.DataFrame(np.round(lda_output, 2), columns=topicnames, index=docnames)
dominant_topic = np.argmax(df_document_topic.values, axis=1)
df_document_topic["dominant_topic"] = dominant_topic
# Topic-Keyword Matrix
df_topic_keywords = pd.DataFrame(best_lda_model.components_)
df_topic_keywords
# Assign Column and Index
df_topic_keywords.columns = vectorizer.get_feature_names_out()
df_topic_keywords.index = topicnames
# View
df_topic_keywords
# Show top n keywords for each topic
def show_topics(vectorizer=vectorizer, lda_model=lda_model, n_words=20):
keywords = np.array(vectorizer.get_feature_names_out())
topic_keywords = []
for topic_weights in lda_model.components_:
top_keyword_locs = (-topic_weights).argsort()[:n_words]
topic_keywords.append(keywords.take(top_keyword_locs))
return topic_keywords
topic_keywords = show_topics(vectorizer=vectorizer, lda_model=best_lda_model, n_words=15)
# Topic - Keywords Dataframe
df_topic_keywords = pd.DataFrame(topic_keywords)
df_topic_keywords.columns = ['Word '+str(i) for i in range(df_topic_keywords.shape[1])]
df_topic_keywords.index = ['Topic '+str(i) for i in range(df_topic_keywords.shape[0])]
df_topic_keywords
topics = [
f'Topic {i}' for i in range(len(df_topic_keywords))
]
df_topic_keywords["Topics"] = topics
df_topic_keywords
# Define function to predict topic for a given text document.
def predict_topic(text, nlp=nlp):
global sent_to_words
global lemmatization
# Step 1: Clean with simple_preprocess
mytext_2 = list(sent_to_words(text))
# Step 2: Lemmatize
mytext_3 = lemmatization(mytext_2, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'], nlp=nlp)
# Step 3: Vectorize transform
mytext_4 = vectorizer.transform(mytext_3)
# Step 4: LDA Transform
topic_probability_scores = best_lda_model.transform(mytext_4)
topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), 1:14].values.tolist()
# Step 5: Infer Topic
infer_topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), -1]
#topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics]
return infer_topic, topic, topic_probability_scores
# Predict the topic
mytext = ["This is a test of a random topic where I talk about politics"]
infer_topic, topic, prob_scores = predict_topic(text = mytext, nlp=nlp)
def apply_predict_topic(text):
text = [text]
infer_topic, topic, prob_scores = predict_topic(text = text, nlp=nlp)
return(infer_topic)
df["Topic_key_word"] = df['comment'].apply(apply_predict_topic)
# plot
subreddits = df.subreddit.value_counts().index[:22]
weight_counts = {
t: [
df[df.Topic_key_word == t].subreddit.value_counts()[subreddit] / df.subreddit.value_counts()[subreddit] for subreddit in subreddits
] for t in topics
}
irony_percs = {
t: [
len(
df[df.subreddit == subreddit][(df[df.subreddit == subreddit].Topic_key_word == t) & (df[df.subreddit == subreddit].label == 1)]
) /
len(
df[df.subreddit == subreddit]
) for subreddit in subreddits
] for t in topics
}
width = 0.9
fig, ax = plt.subplots(figsize = (10, 7))
plt.axhline(0.5, color = 'red', ls=":", alpha = .3)
bottom = np.zeros(len(subreddits))
for k, v in weight_counts.items():
p = ax.bar(subreddits, v, width, label=k, bottom=bottom)
ax.bar(subreddits, irony_percs[k], width - 0.01, bottom=bottom, color = 'black', edgecolor = 'white', alpha = .2, hatch = '\\')
bottom += v
ax.set_title("Perc of topics for each subreddit")
ax.legend(loc="upper right")
plt.xticks(rotation=70)
return fig
with gr.Blocks() as demo:
button = gr.Radio(
label="Plot type",
choices=['scatter_plot', 'heatmap', 'us_map', 'interactive_barplot', "radial", "multiline"], value='scatter_plot'
)
choose_context = gr.Radio(
label="Context LDA",
choices=['comment', 'sup comment', 'sup comment + comment'], value='sup comment'
)
plot = gr.Plot(label="Plot")
button.change(main, inputs=[choose_context], outputs=[plot])
demo.load(main, inputs=[choose_context], outputs=[plot])
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
if __name__ == "__main__":
demo.launch()
|