Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import logging | |
import os | |
import shutil | |
import struct | |
import tempfile | |
from dataclasses import dataclass | |
from enum import Enum, auto | |
from math import prod | |
from pathlib import Path | |
from io import BufferedWriter | |
from typing import IO, Any, Sequence, Mapping | |
from string import ascii_letters, digits | |
import numpy as np | |
from .constants import ( | |
GGUF_DEFAULT_ALIGNMENT, | |
GGUF_MAGIC, | |
GGUF_VERSION, | |
GGMLQuantizationType, | |
GGUFEndian, | |
GGUFValueType, | |
Keys, | |
RopeScalingType, | |
PoolingType, | |
TokenType, | |
) | |
from .quants import quant_shape_from_byte_shape | |
logger = logging.getLogger(__name__) | |
SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf" | |
class TensorInfo: | |
shape: Sequence[int] | |
dtype: GGMLQuantizationType | |
nbytes: int | |
tensor: np.ndarray[Any, Any] | None = None | |
class GGUFValue: | |
value: Any | |
type: GGUFValueType | |
class WriterState(Enum): | |
NO_FILE = auto() | |
EMPTY = auto() | |
HEADER = auto() | |
KV_DATA = auto() | |
TI_DATA = auto() | |
WEIGHTS = auto() | |
class GGUFWriter: | |
fout: list[BufferedWriter] | None | |
path: Path | None | |
temp_file: tempfile.SpooledTemporaryFile[bytes] | None | |
tensors: list[dict[str, TensorInfo]] | |
kv_data: list[dict[str, GGUFValue]] | |
state: WriterState | |
_simple_value_packing = { | |
GGUFValueType.UINT8: "B", | |
GGUFValueType.INT8: "b", | |
GGUFValueType.UINT16: "H", | |
GGUFValueType.INT16: "h", | |
GGUFValueType.UINT32: "I", | |
GGUFValueType.INT32: "i", | |
GGUFValueType.FLOAT32: "f", | |
GGUFValueType.UINT64: "Q", | |
GGUFValueType.INT64: "q", | |
GGUFValueType.FLOAT64: "d", | |
GGUFValueType.BOOL: "?", | |
} | |
def __init__( | |
self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE, | |
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False | |
): | |
self.fout = None | |
self.path = Path(path) if path else None | |
self.arch = arch | |
self.endianess = endianess | |
self.data_alignment = GGUF_DEFAULT_ALIGNMENT | |
self.use_temp_file = use_temp_file | |
self.temp_file = None | |
self.tensors = [{}] | |
self.kv_data = [{}] | |
self.split_max_tensors = split_max_tensors | |
self.split_max_size = split_max_size | |
self.dry_run = dry_run | |
self.small_first_shard = small_first_shard | |
logger.info("gguf: This GGUF file is for {0} Endian only".format( | |
"Big" if self.endianess == GGUFEndian.BIG else "Little", | |
)) | |
self.state = WriterState.NO_FILE | |
if self.small_first_shard: | |
self.tensors.append({}) | |
self.add_architecture() | |
def get_total_parameter_count(self) -> tuple[int, int, int, int]: | |
total_params = 0 | |
shared_params = 0 | |
expert_params = 0 | |
expert_sum = 0 | |
n_expert_tensors = 0 | |
last_lora_a: tuple[str, TensorInfo] | None = None | |
for tensors in self.tensors: | |
for name, info in tensors.items(): | |
shape = info.shape | |
if name.endswith(".lora_a"): | |
last_lora_a = (name, info) | |
continue | |
elif name.endswith(".lora_b"): | |
if last_lora_a is None or last_lora_a[0] != name[:-1] + "a": | |
# Bail when the LoRA pair can't be found trivially | |
logger.warning("can't measure LoRA size correctly, tensor order is unusual") | |
return 0, 0, 0, 0 | |
else: | |
shape = (*shape[:-1], last_lora_a[1].shape[-1]) | |
size = prod(shape) | |
if "_exps." in name: | |
expert_params += (size // shape[-3]) | |
expert_sum += shape[-3] | |
n_expert_tensors += 1 | |
else: | |
shared_params += size | |
total_params += size | |
# Hopefully this should work even for variable-expert-count models | |
expert_count = (expert_sum // n_expert_tensors) if n_expert_tensors > 0 else 0 | |
# Negate the total to signal it's likely not exact | |
if last_lora_a is not None: | |
total_params = -total_params | |
# NOTE: keep the output in the same order as accepted by 'size_label' in gguf-py/gguf/utility.py | |
return total_params, shared_params, expert_params, expert_count | |
def format_shard_names(self, path: Path) -> list[Path]: | |
if len(self.tensors) == 1: | |
return [path] | |
return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))] | |
def open_output_file(self, path: Path | None = None) -> None: | |
if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path): | |
# allow calling this multiple times as long as the path is the same | |
return | |
if self.state is not WriterState.NO_FILE: | |
raise ValueError(f'Expected output file to be not yet opened, got {self.state}') | |
if path is not None: | |
self.path = path | |
if self.path is not None: | |
filenames = self.print_plan() | |
self.fout = [open(filename, "wb") for filename in filenames] | |
self.state = WriterState.EMPTY | |
def print_plan(self) -> list[Path]: | |
logger.info("Writing the following files:") | |
assert self.path is not None | |
filenames = self.format_shard_names(self.path) | |
assert len(filenames) == len(self.tensors) | |
for name, tensors in zip(filenames, self.tensors): | |
logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}") | |
if self.dry_run: | |
logger.info("Dry run, not writing files") | |
for name in filenames: | |
print(name) # noqa: NP100 | |
exit() | |
return filenames | |
def add_shard_kv_data(self) -> None: | |
if len(self.tensors) == 1: | |
return | |
total_tensors = sum(len(t) for t in self.tensors) | |
assert self.fout is not None | |
total_splits = len(self.fout) | |
self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits)) | |
for i, kv_data in enumerate(self.kv_data): | |
kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16) | |
kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16) | |
kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32) | |
def write_header_to_file(self, path: Path | None = None) -> None: | |
if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0): | |
logger.warning("Model fails split requirements, not splitting") | |
self.open_output_file(path) | |
if self.state is not WriterState.EMPTY: | |
raise ValueError(f'Expected output file to be empty, got {self.state}') | |
assert self.fout is not None | |
assert len(self.fout) == len(self.tensors) | |
assert len(self.kv_data) == 1 | |
self.add_shard_kv_data() | |
for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data): | |
fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True)) | |
fout.write(self._pack("I", GGUF_VERSION)) | |
fout.write(self._pack("Q", len(tensors))) | |
fout.write(self._pack("Q", len(kv_data))) | |
fout.flush() | |
self.state = WriterState.HEADER | |
def write_kv_data_to_file(self) -> None: | |
if self.state is not WriterState.HEADER: | |
raise ValueError(f'Expected output file to contain the header, got {self.state}') | |
assert self.fout is not None | |
for fout, kv_data in zip(self.fout, self.kv_data): | |
kv_bytes = bytearray() | |
for key, val in kv_data.items(): | |
kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False) | |
kv_bytes += self._pack_val(val.value, val.type, add_vtype=True) | |
fout.write(kv_bytes) | |
self.flush() | |
self.state = WriterState.KV_DATA | |
def write_ti_data_to_file(self) -> None: | |
if self.state is not WriterState.KV_DATA: | |
raise ValueError(f'Expected output file to contain KV data, got {self.state}') | |
assert self.fout is not None | |
for fout, tensors in zip(self.fout, self.tensors): | |
ti_data = bytearray() | |
offset_tensor = 0 | |
for name, ti in tensors.items(): | |
ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False) | |
n_dims = len(ti.shape) | |
ti_data += self._pack("I", n_dims) | |
for j in range(n_dims): | |
ti_data += self._pack("Q", ti.shape[n_dims - 1 - j]) | |
ti_data += self._pack("I", ti.dtype) | |
ti_data += self._pack("Q", offset_tensor) | |
offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment) | |
fout.write(ti_data) | |
fout.flush() | |
self.state = WriterState.TI_DATA | |
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None: | |
if any(key in kv_data for kv_data in self.kv_data): | |
raise ValueError(f'Duplicated key name {key!r}') | |
self.kv_data[0][key] = GGUFValue(value=val, type=vtype) | |
def add_uint8(self, key: str, val: int) -> None: | |
self.add_key_value(key,val, GGUFValueType.UINT8) | |
def add_int8(self, key: str, val: int) -> None: | |
self.add_key_value(key, val, GGUFValueType.INT8) | |
def add_uint16(self, key: str, val: int) -> None: | |
self.add_key_value(key, val, GGUFValueType.UINT16) | |
def add_int16(self, key: str, val: int) -> None: | |
self.add_key_value(key, val, GGUFValueType.INT16) | |
def add_uint32(self, key: str, val: int) -> None: | |
self.add_key_value(key, val, GGUFValueType.UINT32) | |
def add_int32(self, key: str, val: int) -> None: | |
self.add_key_value(key, val, GGUFValueType.INT32) | |
def add_float32(self, key: str, val: float) -> None: | |
self.add_key_value(key, val, GGUFValueType.FLOAT32) | |
def add_uint64(self, key: str, val: int) -> None: | |
self.add_key_value(key, val, GGUFValueType.UINT64) | |
def add_int64(self, key: str, val: int) -> None: | |
self.add_key_value(key, val, GGUFValueType.INT64) | |
def add_float64(self, key: str, val: float) -> None: | |
self.add_key_value(key, val, GGUFValueType.FLOAT64) | |
def add_bool(self, key: str, val: bool) -> None: | |
self.add_key_value(key, val, GGUFValueType.BOOL) | |
def add_string(self, key: str, val: str) -> None: | |
if not val: | |
return | |
self.add_key_value(key, val, GGUFValueType.STRING) | |
def add_array(self, key: str, val: Sequence[Any]) -> None: | |
if len(val) == 0: | |
return | |
self.add_key_value(key, val, GGUFValueType.ARRAY) | |
def ggml_pad(x: int, n: int) -> int: | |
return ((x + n - 1) // n) * n | |
def add_tensor_info( | |
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype, | |
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None, | |
) -> None: | |
if self.state is not WriterState.NO_FILE: | |
raise ValueError(f'Expected output file to be not yet opened, got {self.state}') | |
if any(name in tensors for tensors in self.tensors): | |
raise ValueError(f'Duplicated tensor name {name!r}') | |
if raw_dtype is None: | |
if tensor_dtype == np.float16: | |
dtype = GGMLQuantizationType.F16 | |
elif tensor_dtype == np.float32: | |
dtype = GGMLQuantizationType.F32 | |
elif tensor_dtype == np.float64: | |
dtype = GGMLQuantizationType.F64 | |
elif tensor_dtype == np.int8: | |
dtype = GGMLQuantizationType.I8 | |
elif tensor_dtype == np.int16: | |
dtype = GGMLQuantizationType.I16 | |
elif tensor_dtype == np.int32: | |
dtype = GGMLQuantizationType.I32 | |
elif tensor_dtype == np.int64: | |
dtype = GGMLQuantizationType.I64 | |
else: | |
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now") | |
else: | |
dtype = raw_dtype | |
if tensor_dtype == np.uint8: | |
tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype) | |
# make sure there is at least one tensor before splitting | |
if len(self.tensors[-1]) > 0: | |
if ( # split when over tensor limit | |
self.split_max_tensors != 0 | |
and len(self.tensors[-1]) >= self.split_max_tensors | |
) or ( # split when over size limit | |
self.split_max_size != 0 | |
and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size | |
): | |
self.tensors.append({}) | |
self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes) | |
def add_tensor( | |
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, | |
raw_dtype: GGMLQuantizationType | None = None, | |
) -> None: | |
if self.endianess == GGUFEndian.BIG: | |
tensor.byteswap(inplace=True) | |
if self.use_temp_file and self.temp_file is None: | |
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024) | |
fp.seek(0) | |
self.temp_file = fp | |
shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape | |
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype) | |
if self.temp_file is None: | |
self.tensors[-1][name].tensor = tensor | |
return | |
tensor.tofile(self.temp_file) | |
self.write_padding(self.temp_file, tensor.nbytes) | |
def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None: | |
pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n | |
if pad != 0: | |
fp.write(bytes([0] * pad)) | |
def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None: | |
if self.state is not WriterState.TI_DATA and self.state is not WriterState.WEIGHTS: | |
raise ValueError(f'Expected output file to contain tensor info or weights, got {self.state}') | |
assert self.fout is not None | |
if self.endianess == GGUFEndian.BIG: | |
tensor.byteswap(inplace=True) | |
file_id = -1 | |
for i, tensors in enumerate(self.tensors): | |
if len(tensors) > 0: | |
file_id = i | |
break | |
fout = self.fout[file_id] | |
# pop the first tensor info | |
# TODO: cleaner way to get the first key | |
first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0] | |
ti = self.tensors[file_id].pop(first_tensor_name) | |
assert ti.nbytes == tensor.nbytes | |
self.write_padding(fout, fout.tell()) | |
tensor.tofile(fout) | |
self.write_padding(fout, tensor.nbytes) | |
self.state = WriterState.WEIGHTS | |
def write_tensors_to_file(self, *, progress: bool = False) -> None: | |
self.write_ti_data_to_file() | |
assert self.fout is not None | |
for fout in self.fout: | |
self.write_padding(fout, fout.tell()) | |
if self.temp_file is None: | |
shard_bar = None | |
bar = None | |
if progress: | |
from tqdm import tqdm | |
total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values()) | |
if len(self.fout) > 1: | |
shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True) | |
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True) | |
for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)): | |
if shard_bar is not None: | |
shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})") | |
total = sum(ti.nbytes for ti in tensors.values()) | |
shard_bar.reset(total=(total if total > 0 else None)) | |
# relying on the fact that Python dicts preserve insertion order (since 3.7) | |
for ti in tensors.values(): | |
assert ti.tensor is not None # can only iterate once over the tensors | |
assert ti.tensor.nbytes == ti.nbytes | |
ti.tensor.tofile(fout) | |
if shard_bar is not None: | |
shard_bar.update(ti.nbytes) | |
if bar is not None: | |
bar.update(ti.nbytes) | |
self.write_padding(fout, ti.nbytes) | |
ti.tensor = None | |
else: | |
self.temp_file.seek(0) | |
shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1]) | |
self.flush() | |
self.temp_file.close() | |
self.state = WriterState.WEIGHTS | |
def flush(self) -> None: | |
assert self.fout is not None | |
for fout in self.fout: | |
fout.flush() | |
def close(self) -> None: | |
if self.fout is not None: | |
for fout in self.fout: | |
fout.close() | |
self.fout = None | |
def add_type(self, type_name: str) -> None: | |
self.add_string(Keys.General.TYPE, type_name) | |
def add_architecture(self) -> None: | |
self.add_string(Keys.General.ARCHITECTURE, self.arch) | |
def add_quantization_version(self, quantization_version: int) -> None: | |
self.add_uint32(Keys.General.QUANTIZATION_VERSION, quantization_version) | |
def add_custom_alignment(self, alignment: int) -> None: | |
self.data_alignment = alignment | |
self.add_uint32(Keys.General.ALIGNMENT, alignment) | |
def add_file_type(self, ftype: int) -> None: | |
self.add_uint32(Keys.General.FILE_TYPE, ftype) | |
def add_name(self, name: str) -> None: | |
self.add_string(Keys.General.NAME, name) | |
def add_author(self, author: str) -> None: | |
self.add_string(Keys.General.AUTHOR, author) | |
def add_version(self, version: str) -> None: | |
self.add_string(Keys.General.VERSION, version) | |
def add_organization(self, organization: str) -> None: | |
self.add_string(Keys.General.ORGANIZATION, organization) | |
def add_finetune(self, finetune: str) -> None: | |
self.add_string(Keys.General.FINETUNE, finetune) | |
def add_basename(self, basename: str) -> None: | |
self.add_string(Keys.General.BASENAME, basename) | |
def add_description(self, description: str) -> None: | |
self.add_string(Keys.General.DESCRIPTION, description) | |
def add_quantized_by(self, quantized: str) -> None: | |
self.add_string(Keys.General.QUANTIZED_BY, quantized) | |
def add_size_label(self, size_label: str) -> None: | |
self.add_string(Keys.General.SIZE_LABEL, size_label) | |
def add_license(self, license: str) -> None: | |
self.add_string(Keys.General.LICENSE, license) | |
def add_license_name(self, license: str) -> None: | |
self.add_string(Keys.General.LICENSE_NAME, license) | |
def add_license_link(self, license: str) -> None: | |
self.add_string(Keys.General.LICENSE_LINK, license) | |
def add_url(self, url: str) -> None: | |
self.add_string(Keys.General.URL, url) | |
def add_doi(self, doi: str) -> None: | |
self.add_string(Keys.General.DOI, doi) | |
def add_uuid(self, uuid: str) -> None: | |
self.add_string(Keys.General.UUID, uuid) | |
def add_repo_url(self, repo_url: str) -> None: | |
self.add_string(Keys.General.REPO_URL, repo_url) | |
def add_source_url(self, url: str) -> None: | |
self.add_string(Keys.General.SOURCE_URL, url) | |
def add_source_doi(self, doi: str) -> None: | |
self.add_string(Keys.General.SOURCE_DOI, doi) | |
def add_source_uuid(self, uuid: str) -> None: | |
self.add_string(Keys.General.SOURCE_UUID, uuid) | |
def add_source_repo_url(self, repo_url: str) -> None: | |
self.add_string(Keys.General.SOURCE_REPO_URL, repo_url) | |
def add_base_model_count(self, source_count: int) -> None: | |
self.add_uint32(Keys.General.BASE_MODEL_COUNT, source_count) | |
def add_base_model_name(self, source_id: int, name: str) -> None: | |
self.add_string(Keys.General.BASE_MODEL_NAME.format(id=source_id), name) | |
def add_base_model_author(self, source_id: int, author: str) -> None: | |
self.add_string(Keys.General.BASE_MODEL_AUTHOR.format(id=source_id), author) | |
def add_base_model_version(self, source_id: int, version: str) -> None: | |
self.add_string(Keys.General.BASE_MODEL_VERSION.format(id=source_id), version) | |
def add_base_model_organization(self, source_id: int, organization: str) -> None: | |
self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization) | |
def add_base_model_url(self, source_id: int, url: str) -> None: | |
self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url) | |
def add_base_model_doi(self, source_id: int, doi: str) -> None: | |
self.add_string(Keys.General.BASE_MODEL_DOI.format(id=source_id), doi) | |
def add_base_model_uuid(self, source_id: int, uuid: str) -> None: | |
self.add_string(Keys.General.BASE_MODEL_UUID.format(id=source_id), uuid) | |
def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None: | |
self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url) | |
def add_tags(self, tags: Sequence[str]) -> None: | |
self.add_array(Keys.General.TAGS, tags) | |
def add_languages(self, languages: Sequence[str]) -> None: | |
self.add_array(Keys.General.LANGUAGES, languages) | |
def add_datasets(self, datasets: Sequence[str]) -> None: | |
self.add_array(Keys.General.DATASETS, datasets) | |
def add_tensor_data_layout(self, layout: str) -> None: | |
self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) | |
def add_vocab_size(self, size: int) -> None: | |
self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size) | |
def add_context_length(self, length: int) -> None: | |
self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length) | |
def add_embedding_length(self, length: int) -> None: | |
self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length) | |
def add_block_count(self, length: int) -> None: | |
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length) | |
def add_leading_dense_block_count(self, length: int) -> None: | |
self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length) | |
def add_feed_forward_length(self, length: int | Sequence[int]) -> None: | |
if isinstance(length, int): | |
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length) | |
else: | |
self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length) | |
def add_expert_feed_forward_length(self, length: int) -> None: | |
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length) | |
def add_expert_shared_feed_forward_length(self, length: int) -> None: | |
self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length) | |
def add_parallel_residual(self, use: bool) -> None: | |
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use) | |
def add_decoder_start_token_id(self, id: int) -> None: | |
self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id) | |
def add_head_count(self, count: int | Sequence[int]) -> None: | |
if isinstance(count, int): | |
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count) | |
else: | |
self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count) | |
def add_head_count_kv(self, count: int | Sequence[int]) -> None: | |
if isinstance(count, int): | |
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count) | |
else: | |
self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count) | |
def add_key_length(self, length: int) -> None: | |
self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length) | |
def add_value_length(self, length: int) -> None: | |
self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length) | |
def add_max_alibi_bias(self, bias: float) -> None: | |
self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias) | |
def add_clamp_kqv(self, value: float) -> None: | |
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value) | |
def add_logit_scale(self, value: float) -> None: | |
self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value) | |
def add_attn_logit_softcapping(self, value: float) -> None: | |
self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value) | |
def add_final_logit_softcapping(self, value: float) -> None: | |
self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value) | |
def add_expert_count(self, count: int) -> None: | |
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count) | |
def add_expert_used_count(self, count: int) -> None: | |
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count) | |
def add_expert_shared_count(self, count: int) -> None: | |
self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count) | |
def add_expert_weights_scale(self, value: float) -> None: | |
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value) | |
def add_swin_norm(self, value: bool) -> None: | |
self.add_bool(Keys.LLM.SWIN_NORM.format(arch=self.arch), value) | |
def add_rescale_every_n_layers(self, count: int) -> None: | |
self.add_uint32(Keys.LLM.RESCALE_EVERY_N_LAYERS.format(arch=self.arch), count) | |
def add_time_mix_extra_dim(self, dim: int) -> None: | |
self.add_uint32(Keys.LLM.TIME_MIX_EXTRA_DIM.format(arch=self.arch), dim) | |
def add_time_decay_extra_dim(self, dim: int) -> None: | |
self.add_uint32(Keys.LLM.TIME_DECAY_EXTRA_DIM.format(arch=self.arch), dim) | |
def add_residual_scale(self, value: float) -> None: | |
self.add_float32(Keys.LLM.RESIDUAL_SCALE.format(arch=self.arch), value) | |
def add_embedding_scale(self, value: float) -> None: | |
self.add_float32(Keys.LLM.EMBEDDING_SCALE.format(arch=self.arch), value) | |
def add_wkv_head_size(self, size: int) -> None: | |
self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size) | |
def add_layer_norm_eps(self, value: float) -> None: | |
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value) | |
def add_layer_norm_rms_eps(self, value: float) -> None: | |
self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value) | |
def add_causal_attention(self, value: bool) -> None: | |
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value) | |
def add_q_lora_rank(self, length: int) -> None: | |
self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length) | |
def add_kv_lora_rank(self, length: int) -> None: | |
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length) | |
def add_relative_attn_buckets_count(self, value: int) -> None: | |
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value) | |
def add_sliding_window(self, value: int) -> None: | |
self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value) | |
def add_attention_scale(self, value: float) -> None: | |
self.add_float32(Keys.Attention.SCALE.format(arch=self.arch), value) | |
def add_pooling_type(self, value: PoolingType) -> None: | |
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value) | |
def add_rope_dimension_count(self, count: int) -> None: | |
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count) | |
def add_rope_freq_base(self, value: float) -> None: | |
self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value) | |
def add_rope_scaling_type(self, value: RopeScalingType) -> None: | |
self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value) | |
def add_rope_scaling_factor(self, value: float) -> None: | |
self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value) | |
def add_rope_scaling_attn_factors(self, value: float) -> None: | |
self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value) | |
def add_rope_scaling_orig_ctx_len(self, value: int) -> None: | |
self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value) | |
def add_rope_scaling_finetuned(self, value: bool) -> None: | |
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value) | |
def add_rope_scaling_yarn_log_mul(self, value: float) -> None: | |
self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value) | |
def add_ssm_conv_kernel(self, value: int) -> None: | |
self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value) | |
def add_ssm_inner_size(self, value: int) -> None: | |
self.add_uint32(Keys.SSM.INNER_SIZE.format(arch=self.arch), value) | |
def add_ssm_state_size(self, value: int) -> None: | |
self.add_uint32(Keys.SSM.STATE_SIZE.format(arch=self.arch), value) | |
def add_ssm_time_step_rank(self, value: int) -> None: | |
self.add_uint32(Keys.SSM.TIME_STEP_RANK.format(arch=self.arch), value) | |
def add_ssm_dt_b_c_rms(self, value: bool) -> None: | |
self.add_bool(Keys.SSM.DT_B_C_RMS.format(arch=self.arch), value) | |
def add_tokenizer_model(self, model: str) -> None: | |
self.add_string(Keys.Tokenizer.MODEL, model) | |
def add_tokenizer_pre(self, pre: str) -> None: | |
self.add_string(Keys.Tokenizer.PRE, pre) | |
def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None: | |
self.add_array(Keys.Tokenizer.LIST, tokens) | |
def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None: | |
self.add_array(Keys.Tokenizer.MERGES, merges) | |
def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None: | |
self.add_array(Keys.Tokenizer.TOKEN_TYPE, types) | |
def add_token_type_count(self, value: int) -> None: | |
self.add_uint32(Keys.Tokenizer.TOKEN_TYPE_COUNT, value) | |
def add_token_scores(self, scores: Sequence[float]) -> None: | |
self.add_array(Keys.Tokenizer.SCORES, scores) | |
def add_bos_token_id(self, id: int) -> None: | |
self.add_uint32(Keys.Tokenizer.BOS_ID, id) | |
def add_eos_token_id(self, id: int) -> None: | |
self.add_uint32(Keys.Tokenizer.EOS_ID, id) | |
def add_unk_token_id(self, id: int) -> None: | |
self.add_uint32(Keys.Tokenizer.UNK_ID, id) | |
def add_sep_token_id(self, id: int) -> None: | |
self.add_uint32(Keys.Tokenizer.SEP_ID, id) | |
def add_pad_token_id(self, id: int) -> None: | |
self.add_uint32(Keys.Tokenizer.PAD_ID, id) | |
def add_cls_token_id(self, id: int) -> None: | |
self.add_uint32(Keys.Tokenizer.CLS_ID, id) | |
def add_mask_token_id(self, id: int) -> None: | |
self.add_uint32(Keys.Tokenizer.MASK_ID, id) | |
def add_add_bos_token(self, value: bool) -> None: | |
self.add_bool(Keys.Tokenizer.ADD_BOS, value) | |
def add_add_eos_token(self, value: bool) -> None: | |
self.add_bool(Keys.Tokenizer.ADD_EOS, value) | |
def add_add_space_prefix(self, value: bool) -> None: | |
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value) | |
def add_remove_extra_whitespaces(self, value: bool) -> None: | |
self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value) | |
def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None: | |
self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap) | |
def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None: | |
if not isinstance(value, str): | |
template_default = None | |
template_names = set() | |
for choice in value: | |
name = choice.get('name', '') | |
template = choice.get('template') | |
# Allowing non-alphanumerical characters in template name is probably not a good idea, so filter it | |
name = ''.join((c if c in ascii_letters + digits else '_' for c in name)) | |
if name and template is not None: | |
if name == 'default': | |
template_default = template | |
else: | |
template_names.add(name) | |
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE_N.format(name=name), template) | |
if template_names: | |
self.add_array(Keys.Tokenizer.CHAT_TEMPLATES, list(template_names)) | |
if template_default is None: | |
return | |
value = template_default | |
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value) | |
def add_eot_token_id(self, id: int) -> None: | |
self.add_uint32(Keys.Tokenizer.EOT_ID, id) | |
def add_eom_token_id(self, id: int) -> None: | |
self.add_uint32(Keys.Tokenizer.EOM_ID, id) | |
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes: | |
pack_prefix = '' | |
if not skip_pack_prefix: | |
pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>' | |
return struct.pack(f'{pack_prefix}{fmt}', value) | |
def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes: | |
kv_data = bytearray() | |
if add_vtype: | |
kv_data += self._pack("I", vtype) | |
pack_fmt = self._simple_value_packing.get(vtype) | |
if pack_fmt is not None: | |
kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL) | |
elif vtype == GGUFValueType.STRING: | |
encoded_val = val.encode("utf-8") if isinstance(val, str) else val | |
kv_data += self._pack("Q", len(encoded_val)) | |
kv_data += encoded_val | |
elif vtype == GGUFValueType.ARRAY: | |
if not isinstance(val, Sequence): | |
raise ValueError("Invalid GGUF metadata array, expecting sequence") | |
if len(val) == 0: | |
raise ValueError("Invalid GGUF metadata array. Empty array") | |
if isinstance(val, bytes): | |
ltype = GGUFValueType.UINT8 | |
else: | |
ltype = GGUFValueType.get_type(val[0]) | |
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]): | |
raise ValueError("All items in a GGUF array should be of the same type") | |
kv_data += self._pack("I", ltype) | |
kv_data += self._pack("Q", len(val)) | |
for item in val: | |
kv_data += self._pack_val(item, ltype, add_vtype=False) | |
else: | |
raise ValueError("Invalid GGUF metadata value type or value") | |
return kv_data | |
def format_n_bytes_to_str(num: int) -> str: | |
if num == 0: | |
return "negligible - metadata only" | |
fnum = float(num) | |
for unit in ("", "K", "M", "G"): | |
if abs(fnum) < 1000.0: | |
return f"{fnum:3.1f}{unit}" | |
fnum /= 1000.0 | |
return f"{fnum:.1f}T - over 1TB, split recommended" | |