Spaces:
Runtime error
Runtime error
## Overview | |
> [!IMPORTANT] | |
> This example and the RPC backend are currently in a proof-of-concept development stage. As such, the functionality is fragile and | |
> insecure. **Never run the RPC server on an open network or in a sensitive environment!** | |
The `rpc-server` allows running `ggml` backend on a remote host. | |
The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them. | |
This can be used for distributed LLM inference with `llama.cpp` in the following way: | |
```mermaid | |
flowchart TD | |
rpcb<-->|TCP|srva | |
rpcb<-->|TCP|srvb | |
rpcb<-.->|TCP|srvn | |
subgraph hostn[Host N] | |
srvn[rpc-server]<-.->backend3["Backend (CUDA,Metal,etc.)"] | |
end | |
subgraph hostb[Host B] | |
srvb[rpc-server]<-->backend2["Backend (CUDA,Metal,etc.)"] | |
end | |
subgraph hosta[Host A] | |
srva[rpc-server]<-->backend["Backend (CUDA,Metal,etc.)"] | |
end | |
subgraph host[Main Host] | |
local["Backend (CUDA,Metal,etc.)"]<-->ggml[llama-cli] | |
ggml[llama-cli]<-->rpcb[RPC backend] | |
end | |
style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5 | |
``` | |
Each host can run a different backend, e.g. one with CUDA and another with Metal. | |
You can also run multiple `rpc-server` instances on the same host, each with a different backend. | |
## Usage | |
On each host, build the corresponding backend with `cmake` and add `-DGGML_RPC=ON` to the build options. | |
For example, to build the CUDA backend with RPC support: | |
```bash | |
mkdir build-rpc-cuda | |
cd build-rpc-cuda | |
cmake .. -DGGML_CUDA=ON -DGGML_RPC=ON | |
cmake --build . --config Release | |
``` | |
Then, start the `rpc-server` with the backend: | |
```bash | |
$ bin/rpc-server -p 50052 | |
create_backend: using CUDA backend | |
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no | |
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes | |
ggml_cuda_init: found 1 CUDA devices: | |
Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes | |
Starting RPC server on 0.0.0.0:50052 | |
``` | |
When using the CUDA backend, you can specify the device with the `CUDA_VISIBLE_DEVICES` environment variable, e.g.: | |
```bash | |
$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052 | |
``` | |
This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device. | |
On the main host build `llama.cpp` for the local backend and add `-DGGML_RPC=ON` to the build options. | |
Finally, when running `llama-cli`, use the `--rpc` option to specify the host and port of each `rpc-server`: | |
```bash | |
$ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99 | |
``` | |
This way you can offload model layers to both local and remote devices. | |