Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import asyncio | |
import json | |
import os | |
import re | |
import socket | |
import subprocess | |
import sys | |
import threading | |
import time | |
import requests | |
from collections.abc import Sequence | |
from contextlib import closing | |
from re import RegexFlag | |
from typing import Any, Literal, cast | |
import aiohttp | |
import numpy as np | |
import openai | |
from openai.types.chat import ChatCompletionChunk | |
from behave import step # pyright: ignore[reportAttributeAccessIssue] | |
from behave.api.async_step import async_run_until_complete | |
from prometheus_client import parser | |
# pyright: reportRedeclaration=false | |
DEFAULT_TIMEOUT_SECONDS = aiohttp.ClientTimeout(total=600) | |
def step_server_config(context, server_fqdn: str, server_port: str): | |
context.server_fqdn = server_fqdn | |
context.server_port = int(server_port) | |
context.n_threads = None | |
context.n_gpu_layer = None | |
if 'PORT' in os.environ: | |
context.server_port = int(os.environ['PORT']) | |
print(f"$PORT set, overriding server port with to {context.server_port}") | |
if 'FQDN' in os.environ: | |
context.server_fqdn = os.environ['FQDN'] | |
print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}") | |
if 'N_GPU_LAYERS' in os.environ: | |
context.n_gpu_layer = int(os.environ['N_GPU_LAYERS']) | |
print(f"$N_GPU_LAYERS set, overriding n_gpu_layer with to {context.n_gpu_layer}") | |
context.base_url = f'http://{context.server_fqdn}:{context.server_port}' | |
context.model_alias = None | |
context.model_file = None | |
context.model_hf_repo = None | |
context.model_hf_file = None | |
context.model_url = None | |
context.n_batch = None | |
context.n_ubatch = None | |
context.n_ctx = None | |
context.n_ga = None | |
context.n_ga_w = None | |
context.n_predict = None | |
context.n_prompts = 0 | |
context.n_server_predict = None | |
context.slot_save_path = None | |
context.id_slot = None | |
context.cache_prompt = None | |
context.n_slots = None | |
context.prompt_prefix = None | |
context.prompt_suffix = None | |
context.server_api_key = None | |
context.server_continuous_batching = False | |
context.server_embeddings = False | |
context.server_reranking = False | |
context.server_metrics = False | |
context.server_process = None | |
context.seed = None | |
context.draft = None | |
context.server_seed = None | |
context.user_api_key = None | |
context.response_format = None | |
context.temperature = None | |
context.lora_file = None | |
context.disable_ctx_shift = False | |
# infill | |
context.infill_input_extra = None | |
context.infill_input_suffix = '' | |
context.infill_input_prefix = '' | |
context.tasks_result = [] | |
context.concurrent_tasks = [] | |
context.prompts = [] | |
context.reranking_query = None | |
context.reranking_documents = [] | |
context.reranking_results = None | |
def step_download_hf_model(context, hf_file: str, hf_repo: str): | |
context.model_hf_repo = hf_repo | |
context.model_hf_file = hf_file | |
context.model_file = os.path.basename(hf_file) | |
def step_download_lora_file(context, lora_file_url: str): | |
file_name = lora_file_url.split('/').pop() | |
context.lora_file = f'../../../{file_name}' | |
with open(context.lora_file, 'wb') as f: | |
f.write(requests.get(lora_file_url).content) | |
def step_model_file(context, model_file: str): | |
context.model_file = model_file | |
def step_model_url(context, model_url: str): | |
context.model_url = model_url | |
def step_model_alias(context, model_alias: str): | |
context.model_alias = model_alias | |
def step_seed(context, seed: int): | |
context.server_seed = seed | |
def step_n_gpu_layer(context, ngl: int): | |
if 'N_GPU_LAYERS' in os.environ: | |
new_ngl = int(os.environ['N_GPU_LAYERS']) | |
if context.debug: | |
print(f"-ngl upgraded from {ngl} to {new_ngl}") | |
ngl = new_ngl | |
context.n_gpu_layer = ngl | |
def step_n_threads(context, n_threads: int): | |
context.n_thread = n_threads | |
def step_draft(context, draft: int): | |
context.draft = draft | |
def step_n_ctx(context, n_ctx: int): | |
context.n_ctx = n_ctx | |
def step_n_slots(context, n_slots: int): | |
context.n_slots = n_slots | |
def step_server_n_predict(context, n_predict: int): | |
context.n_server_predict = n_predict if n_predict > 0 else None | |
def step_slot_save_path(context, slot_save_path: str): | |
context.slot_save_path = slot_save_path | |
def step_id_slot(context, id_slot: int): | |
context.id_slot = id_slot | |
def step_enable_prompt_cache(context): | |
context.cache_prompt = True | |
def step_server_continuous_batching(context): | |
context.server_continuous_batching = True | |
def step_server_embeddings(context): | |
context.server_embeddings = True | |
def step_server_reranking(context): | |
context.server_reranking = True | |
def step_server_metrics(context): | |
context.server_metrics = True | |
def step_server_disable_ctx_shift(context): | |
context.disable_ctx_shift = True | |
def step_start_server(context): | |
start_server_background(context) | |
attempts = 0 | |
max_attempts = 20 | |
if 'GITHUB_ACTIONS' in os.environ: | |
max_attempts *= 2 | |
addrs = socket.getaddrinfo(context.server_fqdn, context.server_port, type=socket.SOCK_STREAM) | |
family, typ, proto, _, sockaddr = addrs[0] | |
while True: | |
with closing(socket.socket(family, typ, proto)) as sock: | |
result = sock.connect_ex(sockaddr) | |
if result == 0: | |
print("\x1b[33;46mserver started!\x1b[0m") | |
return | |
attempts += 1 | |
if attempts > max_attempts: | |
assert False, "server not started" | |
print(f"waiting for server to start, connect error code = {result}...") | |
time.sleep(0.1) | |
async def wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int): | |
match expecting_status: | |
case 'healthy': | |
await wait_for_slots_status(context, context.base_url, 200, | |
timeout=timeout) | |
case 'ready' | 'idle': | |
await wait_for_slots_status(context, context.base_url, 200, | |
timeout=timeout, | |
params={'fail_on_no_slot': 1}, | |
slots_idle=context.n_slots, | |
slots_processing=0) | |
case 'busy': | |
await wait_for_slots_status(context, context.base_url, 503, | |
params={'fail_on_no_slot': 1}, | |
slots_idle=0, | |
slots_processing=context.n_slots) | |
case _: | |
assert False, "unknown status" | |
async def step_wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int): | |
await wait_for_server_status_with_timeout(context, expecting_status, timeout) | |
async def step_wait_for_server_status(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str): | |
await wait_for_server_status_with_timeout(context, expecting_status, 30) | |
async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str): | |
match expected_slot_status_string: | |
case 'idle': | |
expected_slot_status = False | |
case 'busy': | |
expected_slot_status = True | |
case _: | |
assert False, "unknown status" | |
expected_slots = [{'id': slot_id, 'is_processing': expected_slot_status} | |
for slot_id in range(context.n_slots)] | |
await request_slots_status(context, expected_slots) | |
async def step_request_completion(context, api_error: Literal['raised'] | str): | |
expect_api_error = api_error == 'raised' or api_error != 'no' | |
seeds = await completions_seed(context, num_seeds=1) | |
completion = await request_completion(context.prompts.pop(), | |
seeds[0] if seeds is not None else seeds, | |
context.base_url, | |
debug=context.debug, | |
n_predict=context.n_predict, | |
cache_prompt=context.cache_prompt, | |
id_slot=context.id_slot, | |
expect_api_error=expect_api_error, | |
user_api_key=context.user_api_key, | |
temperature=context.temperature) | |
context.tasks_result.append(completion) | |
if context.debug: | |
print(f"Completion response: {completion}") | |
if api_error == 'raised': | |
assert completion == 401, f"completion must be an 401 status code: {completion}" | |
elif api_error.isdigit(): | |
api_error_code = int(api_error) | |
assert completion == api_error_code, f"completion must be an {api_error_code} status code: {completion}" | |
async def step_request_completion(context, api_error: Literal['raised'] | str): | |
if api_error != 'no': | |
raise ValueError(f'api_error={api_error} is not yet implemented') | |
payload = { | |
"prompt": context.prompts[0], | |
"input_suffix": context.infill_input_suffix, | |
"input_prefix": context.infill_input_prefix, | |
"n_predict": context.n_predict, | |
"seed": context.seed, | |
"temperature": context.temperature, | |
} | |
if context.infill_input_extra is not None: | |
payload['input_extra'] = context.infill_input_extra | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{context.base_url}/infill', | |
json=payload) as response: | |
assert response.status == 200 | |
context.tasks_result = [await response.json()] | |
def step_n_tokens_predicted_with_content(context, predicted_n, re_content): | |
context.completion = context.tasks_result.pop() | |
assert_n_tokens_predicted(context.completion, predicted_n, re_content) | |
def step_n_tokens_predicted(context, predicted_n): | |
context.completion = context.tasks_result.pop() | |
assert_n_tokens_predicted(context.completion, predicted_n) | |
async def step_predictions_equal(context): | |
n_completions = await gather_tasks_results(context) | |
assert n_completions >= 2, "need at least 2 completions" | |
assert_all_predictions_equal(context.tasks_result) | |
context.tasks_result = [] | |
async def step_predictions_different(context): | |
n_completions = await gather_tasks_results(context) | |
assert n_completions >= 2, "need at least 2 completions" | |
assert_all_predictions_different(context.tasks_result) | |
context.tasks_result = [] | |
async def step_token_probabilities_equal(context): | |
n_completions = await gather_tasks_results(context) | |
assert n_completions >= 2, "need at least 2 completions" | |
assert_all_token_probabilities_equal(context.tasks_result) | |
context.tasks_result = [] | |
def step_assert_completion_truncated(context): | |
step_assert_completion_truncated(context, '') | |
def step_assert_completion_truncated(context, truncated): | |
truncated = truncated != "not" | |
assert context.completion['truncated'] == truncated, f'{context.completion}' | |
def step_impl(context, n_prompt): | |
assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}" | |
def step_user_prompt(context, user_prompt): | |
context.prompts.append(user_prompt) | |
context.n_prompts = len(context.prompts) | |
def step_system_prompt(context, system_prompt): | |
context.system_prompt = system_prompt | |
def step_model(context, model): | |
context.model = model | |
def step_max_tokens(context, max_tokens): | |
context.n_predict = max_tokens | |
def step_response_format(context, response_format): | |
context.response_format = json.loads(response_format) | |
def step_temperature(context, temperature): | |
context.temperature = temperature | |
def step_streaming(context, enable_streaming): | |
context.enable_streaming = enable_streaming == 'enabled' | |
def step_user_api_key(context, user_api_key): | |
context.user_api_key = user_api_key | |
def step_no_user_api_key(context): | |
context.user_api_key = None | |
def step_no_user_api_key_space(context): | |
context.user_api_key = None | |
def step_server_api_key(context, server_api_key): | |
context.server_api_key = server_api_key | |
def step_n_junk(context, n_junk): | |
context.n_junk = n_junk | |
def step_n_batch(context, n_batch): | |
context.n_batch = n_batch | |
def step_n_ubatch(context, n_ubatch): | |
context.n_ubatch = n_ubatch | |
def step_seed(context, seed): | |
if context.seed is None: | |
context.seed = [seed] | |
else: | |
context.seed.append(seed) | |
def step_bos_token(context, bos): | |
context.bos = bos | |
def step_prompt_prefix(context): | |
context.prompt_prefix = context_text(context) | |
def step_prompt_junk_suffix(context): | |
context.prompt_junk_suffix = context_text(context) | |
def step_prompt_suffix(context): | |
context.prompt_suffix = context_text(context) | |
def step_impl(context, n_ga): | |
context.n_ga = n_ga | |
def step_impl(context, n_ga_w): | |
context.n_ga_w = n_ga_w | |
def step_prompt_passkey(context): | |
context.prompt_passkey = context_text(context) | |
def step_set_rerank_query(context): | |
context.reranking_query = context_text(context) | |
context.reranking_documents = [] | |
def step_set_rerank_document(context): | |
context.reranking_documents.append(context_text(context)) | |
def step_fixed_prompts(context, n_prompts): | |
context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)]) | |
context.n_prompts = n_prompts | |
def step_prompt_passkey(context, passkey, i_pos): | |
prompt = "" | |
for i in range(context.n_junk): | |
if i % context.n_junk == i_pos: | |
prompt += context.prompt_passkey # the passkey is already substituted | |
prompt += context.prompt_junk_suffix | |
if context.debug: | |
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m" | |
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```") | |
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix) | |
context.n_prompts = len(context.prompts) | |
async def step_oai_chat_completions(context, api_error): | |
if context.debug: | |
print(f"Submitting OAI compatible completions request...") | |
expect_api_error = api_error == 'raised' | |
seeds = await completions_seed(context, num_seeds=1), | |
completion = await oai_chat_completions(context.prompts.pop(), | |
seeds[0] if seeds is not None else seeds, | |
context.system_prompt, | |
context.base_url, | |
'/v1/chat', | |
False, | |
model=context.model if hasattr(context, 'model') else None, | |
n_predict=context.n_predict | |
if hasattr(context, 'n_predict') else None, | |
enable_streaming=context.enable_streaming | |
if hasattr(context, 'enable_streaming') else None, | |
response_format=context.response_format | |
if hasattr(context, 'response_format') else None, | |
user_api_key=context.user_api_key | |
if hasattr(context, 'user_api_key') else None, | |
expect_api_error=expect_api_error) | |
context.tasks_result.append(completion) | |
if context.debug: | |
print(f"Completion response: {completion}") | |
if expect_api_error: | |
assert completion == 401, f"completion must be an 401 status code: {completion}" | |
if context.debug: | |
print(f"Completion response: {completion}") | |
def step_a_prompt(context): | |
context.prompts.append(context_text(context)) | |
context.n_prompts = len(context.prompts) | |
def step_a_prompt_prompt(context, prompt): | |
context.prompts.append(prompt) | |
context.n_prompts = len(context.prompts) | |
# TODO: allow this to be repeated | |
def step_infill_input_extra(context, filename, text): | |
if filename == 'none': | |
context.infill_input_extra = None | |
else: | |
context.infill_input_extra = [{'filename': filename, 'text': text}] | |
def step_infill_input_suffix(context, text): | |
context.infill_input_suffix = text | |
def step_infill_input_prefix(context, text): | |
context.infill_input_prefix = text | |
def step_many_prompts(context, num_prompts, prompt, seed): | |
if context.seed is None: | |
context.seed = [] | |
for _ in range(num_prompts): | |
context.seed.append(seed) | |
context.prompts.append(prompt) | |
context.n_prompts = len(context.prompts) | |
async def step_concurrent_completion_requests(context): | |
await concurrent_requests( | |
context, | |
request_completion, | |
# prompt is inserted automatically | |
context.base_url, | |
debug=context.debug, | |
prompt_prefix=context.prompt_prefix, | |
prompt_suffix=context.prompt_suffix, | |
n_predict=context.n_predict if hasattr(context, 'n_predict') else None, | |
user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None, | |
temperature=context.temperature, | |
) | |
async def step_oai_chat_completions(context): | |
await concurrent_requests(context, oai_chat_completions, | |
# user_prompt is inserted automatically | |
context.system_prompt, | |
context.base_url, | |
'/v1/chat/completions', | |
True, # async_client | |
model=context.model | |
if hasattr(context, 'model') else None, | |
n_predict=context.n_predict | |
if hasattr(context, 'n_predict') else None, | |
enable_streaming=context.enable_streaming | |
if hasattr(context, 'enable_streaming') else None, | |
response_format=context.response_format | |
if hasattr(context, 'response_format') else None, | |
user_api_key=context.user_api_key | |
if hasattr(context, 'user_api_key') else None) | |
async def step_oai_chat_completions(context): | |
await concurrent_requests(context, oai_chat_completions, | |
# user_prompt is inserted automatically | |
context.system_prompt, | |
context.base_url, | |
'/chat/completions', | |
True, # async_client | |
model=context.model | |
if hasattr(context, 'model') else None, | |
n_predict=context.n_predict | |
if hasattr(context, 'n_predict') else None, | |
enable_streaming=context.enable_streaming | |
if hasattr(context, 'enable_streaming') else None, | |
response_format=context.response_format | |
if hasattr(context, 'response_format') else None, | |
user_api_key=context.user_api_key | |
if hasattr(context, 'user_api_key') else None) | |
async def step_all_prompts_are_predicted(context): | |
await all_prompts_are_predicted(context) | |
async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted): | |
await all_prompts_are_predicted(context, n_expected_predicted) | |
async def all_prompts_are_predicted(context, expected_predicted_n=None): | |
n_completions = await gather_tasks_results(context) | |
assert n_completions > 0 | |
for i in range(n_completions): | |
assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n) | |
assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests" | |
async def step_compute_embedding(context): | |
context.n_prompts = 1 | |
context.embeddings = await request_embedding(context_text(context), None, base_url=context.base_url) | |
async def step_compute_reranking(context): | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{context.base_url}/reranking', | |
json={ | |
"query": context.reranking_query, | |
"documents": context.reranking_documents, | |
}) as response: | |
if response.status == 200: | |
response_json = await response.json() | |
context.reranking_results = response_json['results'] | |
else: | |
context.reranking_results = response.status | |
async def step_all_embeddings_are_the_same(context): | |
n_embedding_requests = await gather_tasks_results(context) | |
assert n_embedding_requests > 0 | |
embeddings = [] | |
for i in range(n_embedding_requests): | |
embedding = context.tasks_result.pop().pop() | |
embeddings.append(embedding) | |
assert_embeddings(embedding) | |
n = len(embeddings) | |
for i in range(n-1): | |
for j in range(i+1, n): | |
embedding1 = np.array(embeddings[i]) | |
embedding2 = np.array(embeddings[j]) | |
if context.debug: | |
print(f"embedding1: {embedding1[-8:]}") | |
print(f"embedding2: {embedding2[-8:]}") | |
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2)) | |
msg = f"Similarity between {i} and {j}: {similarity:.10f}" | |
if context.debug: | |
print(f"{msg}") | |
assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg | |
def step_assert_embeddings(context): | |
assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n" | |
f"context.n_prompts={context.n_prompts}\n" | |
f"context.embeddings={context.embeddings}") | |
for embedding in context.embeddings: | |
assert_embeddings(embedding) | |
def step_assert_embeddings(context, api_error_code: int): | |
assert context.embeddings == api_error_code, f"embeddings request must return code {api_error_code}, but got {context.embeddings}" | |
async def step_oai_compute_embeddings(context): | |
context.n_prompts = 1 | |
context.embeddings = await request_oai_embeddings(context_text(context), None, | |
base_url=context.base_url, | |
user_api_key=context.user_api_key, | |
model=context.model) | |
async def step_oai_compute_embeddings_multiple_inputs(context): | |
context.embeddings = await request_oai_embeddings(context.prompts, None, | |
base_url=context.base_url, | |
user_api_key=context.user_api_key, | |
model=context.model) | |
context.prompts.clear() | |
async def step_concurrent_embedding_requests(context): | |
await concurrent_requests(context, | |
request_embedding, | |
# prompt is inserted automatically | |
base_url=context.base_url) | |
async def step_concurrent_oai_embedding_requests(context): | |
await concurrent_requests(context, | |
request_oai_embeddings, | |
# prompt is inserted automatically | |
base_url=context.base_url, | |
async_client=True, | |
model=context.model) | |
async def all_embeddings_are_generated(context): | |
n_embedding_requests = await gather_tasks_results(context) | |
assert n_embedding_requests == context.n_prompts | |
for i in range(n_embedding_requests): | |
assert_embeddings(context.tasks_result.pop().pop()) | |
def reranking_results_are_returned(context): | |
assert len(context.reranking_results) == len(context.reranking_documents) | |
def reranking_results_are_returned(context, idx_high: int, idx_low: int): | |
max_score, max_idx = 0, 0 | |
min_score, min_idx = 0, 0 | |
for res in context.reranking_results: | |
if max_score < res['relevance_score']: | |
max_score = res['relevance_score'] | |
max_idx = res['index'] | |
if min_score > res['relevance_score']: | |
min_score = res['relevance_score'] | |
min_idx = res['index'] | |
print(context.reranking_results) | |
assert max_idx == idx_high | |
assert min_idx == idx_low | |
def step_tokenize_set_add_special(context): | |
context.tokenize_add_special = True | |
async def step_tokenize_with_pieces(context): | |
context.tokenized_text = context_text(context) | |
async with aiohttp.ClientSession() as session: | |
tokenize_args = {"content": context.tokenized_text, "with_pieces": True} | |
if getattr(context, "tokenize_add_special", None) is not None: | |
tokenize_args["add_special"] = context.tokenize_add_special | |
async with session.post( | |
f"{context.base_url}/tokenize", json=tokenize_args | |
) as response: | |
assert response.status == 200 | |
tokenize_json = await response.json() | |
context.tokens_with_pieces = tokenize_json["tokens"] | |
async def step_tokenize_with_pieces(context): | |
# Verify that the response contains both token IDs and pieces | |
assert all( | |
"id" in token and "piece" in token for token in context.tokens_with_pieces | |
) | |
async def step_tokenize(context): | |
context.tokenized_text = context_text(context) | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
tokenize_args = { | |
"content": context.tokenized_text, | |
} | |
if getattr(context, 'tokenize_add_special', None) is not None: | |
tokenize_args['add_special'] = context.tokenize_add_special | |
async with session.post(f'{context.base_url}/tokenize', | |
json=tokenize_args) as response: | |
assert response.status == 200 | |
tokenize_json = await response.json() | |
context.tokens = tokenize_json['tokens'] | |
async def step_detokenize(context): | |
assert len(context.tokens) > 0 | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{context.base_url}/detokenize', | |
json={ | |
"tokens": context.tokens, | |
}) as response: | |
assert response.status == 200 | |
detokenize_json = await response.json() | |
# SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15 | |
assert context.tokenized_text == detokenize_json['content'].strip() | |
def step_strings_for_tokenization(context): | |
assert context.tokens[0] == context.bos | |
def step_strings_for_tokenization(context): | |
assert context.tokens[0] != context.bos | |
def step_strings_for_tokenization(context): | |
context.tokens = context.tokens[1:] | |
async def step_options_request(context, origin): | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin} | |
async with session.options(f'{context.base_url}/v1/chat/completions', | |
headers=headers) as response: | |
assert response.status == 200 | |
context.options_response = response | |
def step_check_options_header_value(context, cors_header, cors_header_value): | |
assert context.options_response.headers[cors_header] == cors_header_value | |
async def step_prometheus_metrics_exported(context): | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with await session.get(f'{context.base_url}/metrics') as metrics_response: | |
assert metrics_response.status == 200 | |
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4" | |
metrics_raw = await metrics_response.text() | |
metric_exported = False | |
if context.debug: | |
print(f"/metrics answer:\n{metrics_raw}") | |
context.metrics = {} | |
for metric in parser.text_string_to_metric_families(metrics_raw): | |
match metric.name: | |
case "llamacpp:kv_cache_usage_ratio": | |
assert len(metric.samples) > 0 | |
metric_exported = True | |
context.metrics[metric.name] = metric | |
assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time" | |
assert metric_exported, "No metrics exported" | |
def step_assert_metric_value(context, metric_name, metric_value): | |
if metric_name not in context.metrics: | |
assert False, f"no metric {metric_name} in {context.metrics.keys()}" | |
assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}" | |
def step_available_models(context): | |
# openai client always expects an api_key | |
openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope' | |
openai.base_url = f'{context.base_url}/v1/' | |
context.models = openai.models.list().data | |
def step_supported_models(context, n_model): | |
if context.debug: | |
print("server models available:", context.models) | |
assert len(context.models) == n_model | |
def step_supported_models(context, i_model: int, param: Literal['identified', 'trained'] | str, preposition: str, param_value: str): | |
assert i_model < len(context.models) | |
model = context.models[i_model] | |
param_value = param_value.split(' ', 1)[0] | |
match param: | |
case 'identified': | |
value = model.id | |
case 'trained': | |
value = str(model.meta["n_ctx_train"]) | |
case _: | |
assert False, "param {param} not supported" | |
assert param_value == value, f"model param {param} {value} != {param_value}" | |
async def concurrent_requests(context, f_completion, *args, **kwargs): | |
context.n_prompts = len(context.prompts) | |
if context.debug: | |
print(f"starting {context.n_prompts} concurrent completion requests...") | |
assert context.n_prompts > 0 | |
seeds = await completions_seed(context) | |
assert seeds is not None | |
for prompt_no in range(context.n_prompts): | |
shifted_args = [context.prompts.pop(), seeds[prompt_no], *args] | |
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs))) | |
await asyncio.sleep(0.01) | |
async def step_save_slot(context, slot_id, filename): | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{context.base_url}/slots/{slot_id}?action=save', | |
json={"filename": filename}, | |
headers={"Content-Type": "application/json"}) as response: | |
context.response = response | |
async def step_restore_slot(context, slot_id, filename): | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{context.base_url}/slots/{slot_id}?action=restore', | |
json={"filename": filename}, | |
headers={"Content-Type": "application/json"}) as response: | |
context.response = response | |
async def step_erase_slot(context, slot_id): | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{context.base_url}/slots/{slot_id}?action=erase', | |
headers={"Content-Type": "application/json"}) as response: | |
context.response = response | |
async def toggle_lora_adapter(context, on_or_off: str, lora_id: int): | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{context.base_url}/lora-adapters', | |
json=[{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}], | |
headers={"Content-Type": "application/json"}) as response: | |
context.response = response | |
print([{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}]) | |
def step_server_responds_with_status_code(context, status_code): | |
assert context.response.status == status_code | |
async def request_completion(prompt, | |
seed, | |
base_url, | |
debug=False, | |
prompt_prefix=None, | |
prompt_suffix=None, | |
n_predict=None, | |
cache_prompt=False, | |
id_slot=None, | |
expect_api_error=None, | |
user_api_key=None, | |
temperature=None) -> int | dict[str, Any]: | |
if debug: | |
print(f"Sending completion request: {prompt}") | |
origin = "my.super.domain" | |
headers = { | |
'Origin': origin | |
} | |
if user_api_key is not None: | |
if debug: | |
print(f"Set user_api_key: {user_api_key}") | |
headers['Authorization'] = f'Bearer {user_api_key}' | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{base_url}/completion', | |
json={ | |
"input_prefix": prompt_prefix, | |
"prompt": prompt, | |
"input_suffix": prompt_suffix, | |
"n_predict": n_predict if n_predict is not None else -1, | |
"cache_prompt": cache_prompt, | |
"id_slot": id_slot, | |
"seed": seed if seed is not None else 42, | |
"temperature": temperature if temperature is not None else 0.8, | |
"n_probs": 2, | |
}, | |
headers=headers) as response: | |
if expect_api_error is None or not expect_api_error: | |
assert response.status == 200 | |
assert response.headers['Access-Control-Allow-Origin'] == origin | |
return await response.json() | |
else: | |
return response.status | |
async def oai_chat_completions(user_prompt, | |
seed, | |
system_prompt, | |
base_url: str, | |
base_path: str, | |
async_client, | |
debug=False, | |
temperature=None, | |
model=None, | |
n_predict=None, | |
enable_streaming=None, | |
response_format=None, | |
user_api_key=None, | |
expect_api_error=None) -> int | dict[str, Any]: | |
if debug: | |
print(f"Sending OAI Chat completions request: {user_prompt}") | |
# openai client always expects an api key | |
user_api_key = user_api_key if user_api_key is not None else 'nope' | |
seed = seed if seed is not None else 42 | |
enable_streaming = enable_streaming if enable_streaming is not None else False | |
payload = { | |
"messages": [ | |
{ | |
"role": "system", | |
"content": system_prompt, | |
}, | |
{ | |
"role": "user", | |
"content": user_prompt, | |
} | |
], | |
"model": model, | |
"max_tokens": n_predict, | |
"stream": enable_streaming, | |
"temperature": temperature if temperature is not None else 0.0, | |
"seed": seed, | |
} | |
if response_format is not None: | |
payload['response_format'] = response_format | |
completion_response = { | |
'content': '', | |
'timings': { | |
'predicted_n': 0, | |
'prompt_n': 0 | |
} | |
} | |
if async_client: | |
origin = 'llama.cpp' | |
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin} | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{base_url}{base_path}', | |
json=payload, | |
headers=headers) as response: | |
if enable_streaming: | |
assert response.status == 200 | |
assert response.headers['Access-Control-Allow-Origin'] == origin | |
assert response.headers['Content-Type'] == "text/event-stream" | |
event_received = True | |
while event_received: | |
event_received = False | |
async for line_in_bytes in response.content: | |
line = line_in_bytes.decode('utf-8') | |
line = line.rstrip('\n').rstrip('\r') | |
if line == '': | |
continue | |
event_data = line.split(': ', 1) | |
assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```' | |
chunk_raw = event_data[1] | |
if chunk_raw == '[DONE]': | |
break | |
chunk = json.loads(chunk_raw) | |
assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```" | |
delta = chunk['choices'][0]['delta'] | |
if 'content' in delta: | |
completion_response['content'] += delta['content'] | |
completion_response['timings']['predicted_n'] += 1 | |
else: | |
if expect_api_error is None or not expect_api_error: | |
assert response.status == 200 | |
assert response.headers['Access-Control-Allow-Origin'] == origin | |
assert response.headers['Content-Type'] == "application/json; charset=utf-8" | |
chat_completion_raw = await response.json() | |
completion_response = { | |
'content': chat_completion_raw['choices'][0]['message'], | |
'timings': { | |
'predicted_n': chat_completion_raw['usage']['completion_tokens'], | |
'prompt_n': chat_completion_raw['usage']['prompt_tokens'] | |
} | |
} | |
else: | |
return response.status | |
else: | |
try: | |
openai.api_key = user_api_key | |
openai.base_url = f'{base_url}{base_path.removesuffix("chat")}' | |
assert model is not None | |
chat_completion = openai.chat.completions.create( | |
messages=payload['messages'], | |
model=model, | |
max_tokens=n_predict, | |
stream=enable_streaming, | |
response_format=payload.get('response_format') or openai.NOT_GIVEN, | |
seed=seed, | |
temperature=payload['temperature'] | |
) | |
except openai.AuthenticationError as e: | |
if expect_api_error is not None and expect_api_error: | |
return 401 | |
else: | |
assert False, f'error raised: {e}' | |
if enable_streaming: | |
chat_completion = cast(openai.Stream[ChatCompletionChunk], chat_completion) | |
for chunk in chat_completion: | |
assert len(chunk.choices) == 1 | |
delta = chunk.choices[0].delta | |
if delta.content is not None: | |
completion_response['content'] += delta.content | |
completion_response['timings']['predicted_n'] += 1 | |
completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop' | |
else: | |
assert len(chat_completion.choices) == 1 | |
assert chat_completion.usage is not None | |
completion_response = { | |
'content': chat_completion.choices[0].message.content, | |
'timings': { | |
'predicted_n': chat_completion.usage.completion_tokens, | |
'prompt_n': chat_completion.usage.prompt_tokens | |
}, | |
'truncated': chat_completion.choices[0].finish_reason != 'stop' | |
} | |
if debug: | |
print("OAI response formatted to llama.cpp:", completion_response) | |
return completion_response | |
async def request_embedding(content, seed, base_url=None) -> list[list[float]] | int: | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{base_url}/embedding', | |
json={ | |
"content": content, | |
}) as response: | |
if response.status == 200: | |
response_json = await response.json() | |
return [response_json['embedding']] | |
else: | |
return response.status | |
async def request_oai_embeddings(input, seed, | |
base_url=None, user_api_key=None, | |
model=None, async_client=False) -> list[list[float]]: | |
# openai client always expects an api_key | |
user_api_key = user_api_key if user_api_key is not None else 'nope' | |
if async_client: | |
origin = 'llama.cpp' | |
headers=[] | |
if user_api_key is not None: | |
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin} | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with session.post(f'{base_url}/v1/embeddings', | |
json={ | |
"input": input, | |
"model": model, | |
}, | |
headers=headers) as response: | |
assert response.status == 200, f"received status code not expected: {response.status}" | |
assert response.headers['Access-Control-Allow-Origin'] == origin | |
assert response.headers['Content-Type'] == "application/json; charset=utf-8" | |
response_json = await response.json() | |
assert response_json['model'] == model, f"invalid model received: {response_json['model']}" | |
assert response_json['object'] == 'list' | |
if isinstance(input, Sequence): | |
embeddings = [] | |
for an_oai_embeddings in response_json['data']: | |
embeddings.append(an_oai_embeddings['embedding']) | |
else: | |
embeddings = [response_json['data']['embedding']] | |
return embeddings | |
else: | |
openai.api_key = user_api_key | |
openai.base_url = f'{base_url}/v1/' | |
assert model is not None | |
oai_embeddings = openai.embeddings.create( | |
model=model, | |
input=input, | |
) | |
return [e.embedding for e in oai_embeddings.data] | |
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None): | |
content = completion_response['content'] | |
n_predicted = completion_response['timings']['predicted_n'] | |
assert len(content) > 0, "no token predicted" | |
if re_content is not None: | |
p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL) | |
matches = p.finditer(content) | |
last_match = 0 | |
highlighted = '' | |
for match in matches: | |
start, end = match.span() | |
highlighted += content[last_match: start] | |
highlighted += '\x1b[33m' | |
highlighted += content[start: end] | |
highlighted += '\x1b[0m' | |
last_match = end | |
highlighted += content[last_match:] | |
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON': | |
print(f"Checking completion response: {highlighted}") | |
assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```' | |
if expected_predicted_n and expected_predicted_n > 0: | |
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:' | |
f' {n_predicted} <> {expected_predicted_n}') | |
def assert_all_predictions_equal(completion_responses): | |
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON': | |
for i, response_i in enumerate(completion_responses): | |
content_i = response_i['content'] | |
print(f"content {i}: {content_i}") | |
for i, response_i in enumerate(completion_responses): | |
content_i = response_i['content'] | |
for j, response_j in enumerate(completion_responses): | |
if i == j: | |
continue | |
content_j = response_j['content'] | |
assert content_i == content_j, "contents not equal" | |
def assert_all_predictions_different(completion_responses): | |
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON': | |
for i, response_i in enumerate(completion_responses): | |
content_i = response_i['content'] | |
print(f"content {i}: {content_i}") | |
for i, response_i in enumerate(completion_responses): | |
content_i = response_i['content'] | |
for j, response_j in enumerate(completion_responses): | |
if i == j: | |
continue | |
content_j = response_j['content'] | |
assert content_i != content_j, "contents not different" | |
def assert_all_token_probabilities_equal(completion_responses): | |
n_predict = len(completion_responses[0]['completion_probabilities']) | |
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON': | |
for pos in range(n_predict): | |
for i, response_i in enumerate(completion_responses): | |
probs_i = response_i['completion_probabilities'][pos]['probs'] | |
print(f"pos {pos}, probs {i}: {probs_i}") | |
for pos in range(n_predict): | |
for i, response_i in enumerate(completion_responses): | |
probs_i = response_i['completion_probabilities'][pos]['probs'] | |
for j, response_j in enumerate(completion_responses): | |
if i == j: | |
continue | |
probs_j = response_j['completion_probabilities'][pos]['probs'] | |
assert probs_i == probs_j, "contents not equal" | |
async def gather_tasks_results(context): | |
n_tasks = len(context.concurrent_tasks) | |
if context.debug: | |
print(f"Waiting for all {n_tasks} tasks results...") | |
for task_no in range(n_tasks): | |
context.tasks_result.append(await context.concurrent_tasks.pop()) | |
n_completions = len(context.tasks_result) | |
return n_completions | |
async def wait_for_slots_status(context, | |
base_url, | |
expected_http_status_code, | |
timeout=3, | |
params=None, | |
slots_idle=None, | |
slots_processing=None): | |
if context.debug: | |
print(f"Starting checking for health for expected_http_status_code={expected_http_status_code}") | |
interval = 0.5 | |
counter = 0 | |
if 'GITHUB_ACTIONS' in os.environ: | |
timeout *= 2 | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
while True: | |
headers = {'Authorization': f'Bearer {context.server_api_key}'} | |
async with await session.get(f'{base_url}/slots', params=params, headers=headers) as slots_response: | |
status_code = slots_response.status | |
slots = await slots_response.json() | |
if context.debug: | |
print(f"slots responses {slots}\n") | |
if status_code == 503 and status_code == expected_http_status_code: | |
return | |
if status_code == 200 and status_code == expected_http_status_code: | |
n_slots_idle = sum(1 if not slot["is_processing"] else 0 for slot in slots) | |
n_slots_processing = sum(1 if slot["is_processing"] else 0 for slot in slots) | |
if ((slots_idle is None or slots_idle == n_slots_idle) | |
and (slots_processing is None or slots_processing == n_slots_processing)): | |
return | |
await asyncio.sleep(interval) | |
counter += interval | |
if counter >= timeout: | |
# Sometimes health requests are triggered after completions are predicted | |
if expected_http_status_code == 503: | |
if len(context.tasks_result) == 0: | |
print("\x1b[5;37;43mWARNING: forcing concurrent tasks," | |
" busy health check missed, probably too fast inference\x1b[0m\n") | |
n_completions = await gather_tasks_results(context) | |
if n_completions > 0: | |
return | |
assert False, f'slots check timeout exceeded {counter}s>={timeout}' | |
def assert_embeddings(embeddings): | |
assert len(embeddings) > 0 | |
embeddings_computed = False | |
for emb in embeddings: | |
if not isinstance(emb, float): | |
assert False, f"Bad embeddings: {embeddings}" | |
if emb != 0: | |
embeddings_computed = True | |
assert embeddings_computed, f"Embeddings: {embeddings}" | |
async def request_slots_status(context, expected_slots): | |
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: | |
async with await session.get(f'{context.base_url}/slots') as slots_response: | |
assert slots_response.status == 200 | |
slots = await slots_response.json() | |
assert_slots_status(slots, expected_slots) | |
def assert_slots_status(slots, expected_slots): | |
assert len(slots) == len(expected_slots) | |
for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)): | |
for key in expected: | |
assert expected[key] == slot[key], (f"invalid slot {slot_id}" | |
f" expected[{key}] != slot[{key}]" | |
f" = {expected[key]} != {slot[key]}") | |
async def completions_seed(context, num_seeds=None): | |
if hasattr(context, "seed") and context.seed is not None: | |
assert len(context.seed) == context.n_prompts | |
if num_seeds is None: | |
num_seeds = context.n_prompts | |
assert num_seeds <= context.n_prompts | |
seeds = context.seed[:num_seeds] | |
context.seed = context.seed[num_seeds:] if num_seeds < context.n_prompts else None | |
return seeds | |
if hasattr(context, "server_seed") and context.server_seed is not None: | |
if num_seeds is None: | |
return [context.server_seed] * context.n_prompts | |
else: | |
return [context.server_seed] * num_seeds | |
return None | |
def context_text(context): | |
return context.text.replace('\r', '') | |
def start_server_background(context): | |
if os.name == 'nt': | |
context.server_path = '../../../build/bin/Release/llama-server.exe' | |
else: | |
context.server_path = '../../../build/bin/llama-server' | |
if 'LLAMA_SERVER_BIN_PATH' in os.environ: | |
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH'] | |
server_listen_addr = context.server_fqdn | |
server_args = [ | |
'--slots', # requires to get slot status via /slots endpoint | |
'--host', server_listen_addr, | |
'--port', context.server_port, | |
] | |
if context.model_file: | |
server_args.extend(['--model', context.model_file]) | |
if context.model_url: | |
server_args.extend(['--model-url', context.model_url]) | |
if context.model_hf_repo: | |
server_args.extend(['--hf-repo', context.model_hf_repo]) | |
if context.model_hf_file: | |
server_args.extend(['--hf-file', context.model_hf_file]) | |
if context.n_batch: | |
server_args.extend(['--batch-size', context.n_batch]) | |
if context.n_ubatch: | |
server_args.extend(['--ubatch-size', context.n_ubatch]) | |
if context.n_threads: | |
server_args.extend(['--threads', context.threads]) | |
if context.n_gpu_layer: | |
server_args.extend(['--n-gpu-layers', context.n_gpu_layer]) | |
if context.draft is not None: | |
server_args.extend(['--draft', context.draft]) | |
if context.server_continuous_batching: | |
server_args.append('--cont-batching') | |
if context.server_embeddings: | |
server_args.append('--embedding') | |
if context.server_reranking: | |
server_args.append('--reranking') | |
if context.server_metrics: | |
server_args.append('--metrics') | |
if context.model_alias: | |
server_args.extend(['--alias', context.model_alias]) | |
if context.n_ctx: | |
server_args.extend(['--ctx-size', context.n_ctx]) | |
if context.n_slots: | |
server_args.extend(['--parallel', context.n_slots]) | |
if context.n_server_predict: | |
server_args.extend(['--n-predict', context.n_server_predict]) | |
if context.slot_save_path: | |
server_args.extend(['--slot-save-path', context.slot_save_path]) | |
if context.server_api_key: | |
server_args.extend(['--api-key', context.server_api_key]) | |
if context.n_ga: | |
server_args.extend(['--grp-attn-n', context.n_ga]) | |
if context.n_ga_w: | |
server_args.extend(['--grp-attn-w', context.n_ga_w]) | |
if context.debug: | |
server_args.append('--verbose') | |
if context.lora_file: | |
server_args.extend(['--lora', context.lora_file]) | |
if context.disable_ctx_shift: | |
server_args.extend(['--no-context-shift']) | |
args = [str(arg) for arg in [context.server_path, *server_args]] | |
print(f"bench: starting server with: {' '.join(args)}") | |
flags = 0 | |
if 'nt' == os.name: | |
flags |= subprocess.DETACHED_PROCESS | |
flags |= subprocess.CREATE_NEW_PROCESS_GROUP | |
flags |= subprocess.CREATE_NO_WINDOW | |
pkwargs = { | |
'creationflags': flags, | |
'stdout': subprocess.PIPE, | |
'stderr': subprocess.PIPE | |
} | |
context.server_process = subprocess.Popen( | |
[str(arg) for arg in [context.server_path, *server_args]], | |
**pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue] | |
def server_log(in_stream, out_stream): | |
for line in iter(in_stream.readline, b''): | |
print(line.decode('utf-8'), end='', file=out_stream) | |
thread_stdout = threading.Thread(target=server_log, args=(context.server_process.stdout, sys.stdout)) | |
thread_stdout.start() | |
thread_stderr = threading.Thread(target=server_log, args=(context.server_process.stderr, sys.stderr)) | |
thread_stderr.start() | |
print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}") | |