Spaces:
Runtime error
Runtime error
struct seq_draft { | |
bool active = false; | |
bool drafting = false; | |
bool skip = false; | |
int i_batch_dft = 0; | |
std::vector<int> i_batch_tgt; | |
std::vector<llama_token> tokens; | |
std::vector<std::vector<llama_token_data>> dists; | |
struct common_sampler * smpl = nullptr; | |
}; | |
int main(int argc, char ** argv) { | |
common_params params; | |
// needed to get candidate probs even for temp <= 0.0 | |
params.sparams.n_probs = 128; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) { | |
return 1; | |
} | |
if (params.n_predict < -1) { | |
LOG_ERR("%s: --n-predict must be >= -1\n", __func__); | |
return 1; | |
} | |
common_init(); | |
if (params.model_draft.empty()) { | |
LOG_ERR("%s: --model-draft is required\n", __func__); | |
return 1; | |
} | |
// max number of parallel drafting sequences (i.e. tree branches) | |
const int n_seq_dft = params.n_parallel; | |
// probability threshold for splitting a draft branch (only for n_seq_dft > 1) | |
const float p_split = params.p_split; | |
std::default_random_engine rng(params.sparams.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sparams.seed); | |
std::uniform_real_distribution<> u_dist; | |
// init llama.cpp | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
llama_model * model_tgt = NULL; | |
llama_model * model_dft = NULL; | |
llama_context * ctx_tgt = NULL; | |
llama_context * ctx_dft = NULL; | |
// load the target model | |
common_init_result llama_init_tgt = common_init_from_params(params); | |
model_tgt = llama_init_tgt.model; | |
ctx_tgt = llama_init_tgt.context; | |
// load the draft model | |
params.model = params.model_draft; | |
params.n_gpu_layers = params.n_gpu_layers_draft; | |
if (params.draft_cpuparams.n_threads > 0) { | |
params.cpuparams.n_threads = params.draft_cpuparams.n_threads; | |
} | |
params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads; | |
common_init_result llama_init_dft = common_init_from_params(params); | |
model_dft = llama_init_dft.model; | |
ctx_dft = llama_init_dft.context; | |
const bool vocab_type_tgt = llama_vocab_type(model_tgt); | |
LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt); | |
const bool vocab_type_dft = llama_vocab_type(model_dft); | |
LOG_DBG("vocab_type dft: %d\n", vocab_type_dft); | |
if (vocab_type_tgt != vocab_type_dft) { | |
LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__); | |
LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt); | |
return 1; | |
} | |
if ( | |
llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) || | |
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) || | |
llama_token_bos(model_tgt) != llama_token_bos(model_dft) || | |
llama_token_eos(model_tgt) != llama_token_eos(model_dft) | |
) { | |
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__); | |
return 1; | |
} | |
{ | |
const int n_vocab_tgt = llama_n_vocab(model_tgt); | |
const int n_vocab_dft = llama_n_vocab(model_dft); | |
const int vocab_diff = n_vocab_tgt > n_vocab_dft | |
? n_vocab_tgt - n_vocab_dft | |
: n_vocab_dft - n_vocab_tgt; | |
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) { | |
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__); | |
LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n", | |
n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE); | |
return 1; | |
} | |
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) { | |
const char * token_text_tgt = llama_token_get_text(model_tgt, i); | |
const char * token_text_dft = llama_token_get_text(model_dft, i); | |
if (std::strcmp(token_text_tgt, token_text_dft) != 0) { | |
LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__); | |
LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i, | |
common_token_to_piece(ctx_tgt, i).c_str(), | |
common_token_to_piece(ctx_dft, i).c_str()); | |
return 1; | |
} | |
} | |
} | |
// Tokenize the prompt | |
std::vector<llama_token> inp; | |
inp = common_tokenize(ctx_tgt, params.prompt, true, true); | |
const int max_context_size = llama_n_ctx(ctx_tgt); | |
const int max_tokens_list_size = max_context_size - 4; | |
if ((int) inp.size() > max_tokens_list_size) { | |
LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); | |
return 1; | |
} | |
LOG("\n\n"); | |
for (auto id : inp) { | |
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str()); | |
} | |
const int n_input = inp.size(); | |
const auto t_enc_start = ggml_time_us(); | |
// eval the prompt with both models | |
llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1)); | |
llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1)); | |
llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input)); | |
const auto t_enc_end = ggml_time_us(); | |
// the 2 models should have the same vocab | |
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft)); | |
// how many tokens to draft each time | |
int n_draft = params.n_draft; | |
int n_predict = 0; | |
int n_drafted = 0; | |
int n_accept = 0; | |
int n_past_tgt = inp.size(); | |
int n_past_dft = inp.size(); | |
// used to determine end of generation | |
bool has_eos = false; | |
// target model sampling context (reuse the llama_context's sampling instance) | |
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams); | |
// draft sequence data | |
std::vector<seq_draft> drafts(n_seq_dft); | |
for (int s = 0; s < n_seq_dft; ++s) { | |
// allocate llama_sampler for each draft sequence | |
drafts[s].smpl = common_sampler_init(model_dft, params.sparams); | |
} | |
llama_batch batch_dft = llama_batch_init(llama_n_batch(ctx_dft), 0, 1); | |
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, n_seq_dft); | |
const auto t_dec_start = ggml_time_us(); | |
// sample from the last token of the prompt | |
drafts[0].i_batch_tgt.resize(1); | |
drafts[0].i_batch_tgt[0] = 0; | |
while (true) { | |
std::set<int> active_seqs = {}; | |
// print current draft sequences | |
for (int s = 0; s < n_seq_dft; ++s) { | |
if (!drafts[s].active) { | |
continue; | |
} | |
active_seqs.insert(s); | |
const auto & tokens = drafts[s].tokens; | |
LOG_DBG("draft %d: %s\n", s, string_from(ctx_dft, tokens).c_str()); | |
} | |
int i_dft = 0; | |
int s_keep = 0; | |
llama_token token_id; | |
std::string token_str; | |
// loop until we fail to accept a drafted token or we run out of drafted tokens | |
while (true) { | |
// check if the target token matches any of the drafts | |
// for stochastic sampling, attempt to match the token with the drafted tokens | |
{ | |
bool accept = false; | |
if (params.sparams.temp > 0) { | |
// stochastic verification | |
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true); | |
auto & dist_tgt = *common_sampler_get_candidates(smpl); | |
float p_tgt = 0.0f; | |
float p_dft = 0.0f; | |
while (active_seqs.size() > 0) { | |
// randomly select a sequence to verify from active sequences | |
std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1); | |
int s = *std::next(active_seqs.begin(), u_int_dist(rng)); | |
if (i_dft >= (int) drafts[s].tokens.size()) { | |
drafts[s].active = false; | |
active_seqs.erase(s); | |
continue; | |
} | |
if (accept) { | |
// if we already accepted a token, we can skip the rest | |
if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) { | |
drafts[s].active = false; | |
active_seqs.erase(s); | |
} | |
continue; | |
} | |
LOG_DBG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size()); | |
float r = u_dist(rng); | |
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true }; | |
//GGML_ASSERT(dist_tgt.size <= dist_dft.size); | |
// acquire the token probabilities assigned by the draft and target models | |
for (size_t i = 0; i < dist_tgt.size; i++) { | |
if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) { | |
p_tgt = dist_tgt.data[i].p; | |
} | |
if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) { | |
p_dft = dist_dft.data[i].p; | |
} | |
if (p_tgt && p_dft) { | |
break; | |
} | |
} | |
LOG_DBG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt); | |
if (r <= p_tgt / p_dft) { | |
s_keep = s; | |
accept = true; | |
token_id = drafts[s].tokens[i_dft]; | |
token_str = common_token_to_piece(ctx_tgt, token_id); | |
common_sampler_accept(smpl, token_id, true); | |
LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str()); | |
break; | |
} else { | |
LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], common_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str()); | |
drafts[s].active = false; | |
// calculate residual probability | |
GGML_ASSERT(dist_tgt.sorted); | |
GGML_ASSERT(dist_dft.sorted); | |
// sort dist by id | |
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) { | |
return a.id < b.id; | |
}); | |
std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) { | |
return a.id < b.id; | |
}); | |
float sum_probs = 0.0f; | |
for (size_t i = 0; i < dist_tgt.size; i++) { | |
if (i < dist_dft.size) { | |
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p); | |
} else { | |
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p); | |
} | |
sum_probs += dist_tgt.data[i].p; | |
} | |
for (size_t i = 0; i < dist_tgt.size; i++) { | |
dist_tgt.data[i].p /= sum_probs; | |
} | |
// sort dist_tgt by p desc | |
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) { | |
return a.p > b.p; | |
}); | |
} | |
active_seqs.erase(s); | |
for(int i = 0; i < n_seq_dft; i++) { | |
if (i == s) { | |
continue; | |
} | |
if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) { | |
// synchronize active status for sequences with the same drafted token | |
drafts[i].active = drafts[i].active && accept; | |
if (!drafts[i].active) { | |
active_seqs.erase(s); | |
} | |
} | |
} | |
} | |
if (!accept) { | |
// all drafted tokens were rejected | |
// sample from the target model | |
LOG_DBG("all drafted tokens were rejected, sampling from residual distribution\n"); | |
std::vector<float> probs(dist_tgt.size); | |
for (size_t i = 0; i < dist_tgt.size; ++i) { | |
probs[i] = dist_tgt.data[i].p; | |
} | |
std::discrete_distribution<> dist(probs.begin(), probs.end()); | |
const int idx = dist(rng); | |
token_id = dist_tgt.data[idx].id; | |
common_sampler_accept(smpl, token_id, true); | |
token_str = common_token_to_piece(ctx_tgt, token_id); | |
} | |
} else { | |
// greedy verification | |
// sample from the target model | |
LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]); | |
token_id = common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]); | |
common_sampler_accept(smpl, token_id, true); | |
token_str = common_token_to_piece(ctx_tgt, token_id); | |
for (int s = 0; s < n_seq_dft; ++s) { | |
if (!drafts[s].active) { | |
continue; | |
} | |
if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) { | |
LOG_DBG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str()); | |
s_keep = s; | |
accept = true; | |
} else { | |
drafts[s].active = false; | |
} | |
} | |
} | |
if (llama_token_is_eog(model_tgt, token_id)) { | |
has_eos = true; | |
} | |
++n_predict; | |
if (accept) { | |
++n_accept; | |
++n_past_tgt; | |
++n_past_dft; | |
++i_dft; | |
if (params.use_color) { | |
// Color token according to its origin sequence | |
LOG("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str()); | |
} else { | |
LOG("%s", token_str.c_str()); | |
} | |
continue; | |
} else { | |
LOG("%s", token_str.c_str()); | |
break; | |
} | |
} | |
} | |
{ | |
LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str()); | |
// TODO: simplify | |
{ | |
LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft); | |
llama_kv_cache_seq_keep(ctx_dft, s_keep); | |
llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1); | |
llama_kv_cache_seq_keep(ctx_dft, 0); | |
llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1); | |
llama_kv_cache_seq_keep(ctx_tgt, s_keep); | |
llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1); | |
llama_kv_cache_seq_keep(ctx_tgt, 0); | |
} | |
for (int s = 0; s < n_seq_dft; ++s) { | |
drafts[s].active = false; | |
drafts[s].tokens.clear(); | |
drafts[s].i_batch_tgt.clear(); | |
drafts[s].dists.clear(); | |
} | |
// note: will be erased after the speculation phase | |
drafts[0].tokens.push_back(token_id); | |
drafts[0].dists.push_back(std::vector<llama_token_data>()); | |
drafts[0].i_batch_tgt.push_back(0); | |
common_batch_clear(batch_dft); | |
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true); | |
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1); | |
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str()); | |
llama_decode(ctx_dft, batch_dft); | |
++n_past_dft; | |
} | |
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { | |
break; | |
} | |
if (drafts[0].smpl) { | |
common_sampler_free(drafts[0].smpl); | |
} | |
drafts[0].smpl = common_sampler_clone(smpl); | |
int n_seq_cur = 1; | |
int n_past_cur = n_past_dft; | |
for (int s = 0; s < n_seq_dft; ++s) { | |
drafts[s].active = false; | |
drafts[s].drafting = false; | |
} | |
drafts[0].active = true; | |
drafts[0].drafting = true; | |
drafts[0].i_batch_dft = 0; | |
common_batch_clear(batch_tgt); | |
common_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true); | |
// sample n_draft tokens from the draft model using tree-based sampling | |
for (int i = 0; i < n_draft; ++i) { | |
batch_dft.n_tokens = 0; | |
for (int s = 0; s < n_seq_dft; ++s) { | |
drafts[s].skip = false; | |
} | |
for (int s = 0; s < n_seq_dft; ++s) { | |
if (!drafts[s].drafting || drafts[s].skip) { | |
continue; | |
} | |
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true); | |
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl); | |
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) { | |
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n", | |
k, s, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str()); | |
} | |
std::vector<int> sa(1, s); | |
// attempt to split the branch if the probability is high enough | |
for (int f = 1; f < 8; ++f) { | |
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) { | |
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur); | |
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1); | |
llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1); | |
// all previous tokens from this branch are now also part of the new branch | |
for (int t = 0; t < batch_tgt.n_tokens; ++t) { | |
for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) { | |
if (batch_tgt.seq_id[t][p] == s) { | |
batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur; | |
batch_tgt.n_seq_id[t]++; | |
break; | |
} | |
} | |
} | |
// copy the draft state | |
drafts[n_seq_cur].active = true; | |
drafts[n_seq_cur].drafting = true; | |
drafts[n_seq_cur].skip = true; | |
drafts[n_seq_cur].tokens = drafts[s].tokens; | |
drafts[n_seq_cur].dists = drafts[s].dists; | |
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft; | |
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt; | |
if (drafts[n_seq_cur].smpl) { | |
common_sampler_free(drafts[n_seq_cur].smpl); | |
} | |
drafts[n_seq_cur].smpl = common_sampler_clone(drafts[s].smpl); | |
sa.push_back(n_seq_cur); | |
n_seq_cur++; | |
} else { | |
break; | |
} | |
} | |
// add drafted token for each sequence | |
for (int is = 0; is < (int) sa.size(); ++is) { | |
const llama_token id = cur_p->data[is].id; | |
const int s = sa[is]; | |
common_sampler_accept(drafts[s].smpl, id, true); | |
drafts[s].tokens.push_back(id); | |
// save cur_p.data into drafts[s].dists | |
drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size}); | |
// add unique drafted tokens to the target batch | |
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens); | |
common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true); | |
// add the token to the batch for batched decoding with the draft model | |
drafts[s].i_batch_dft = batch_dft.n_tokens; | |
common_batch_add(batch_dft, id, n_past_cur, { s }, true); | |
if (batch_tgt.n_tokens > n_draft) { | |
drafts[s].drafting = false; | |
} | |
} | |
} | |
// no sequence is drafting anymore | |
if (batch_dft.n_tokens == 0) { | |
break; | |
} | |
// evaluate the drafted tokens on the draft model | |
llama_decode(ctx_dft, batch_dft); | |
++n_past_cur; | |
++n_drafted; | |
if (batch_tgt.n_tokens > n_draft) { | |
break; | |
} | |
} | |
// evaluate the target model on the drafted tokens | |
{ | |
llama_kv_cache_seq_keep(ctx_tgt, 0); | |
for (int s = 1; s < n_seq_dft; ++s) { | |
llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1); | |
} | |
// LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str()); | |
llama_decode(ctx_tgt, batch_tgt); | |
++n_past_tgt; | |
} | |
// the first token is always proposed by the target model before the speculation loop so we erase it here | |
for (int s = 0; s < n_seq_dft; ++s) { | |
if (!drafts[s].active) { | |
continue; | |
} | |
drafts[s].tokens.erase(drafts[s].tokens.begin()); | |
drafts[s].dists.erase(drafts[s].dists.begin()); | |
} | |
} | |
auto t_dec_end = ggml_time_us(); | |
LOG("\n\n"); | |
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); | |
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); | |
LOG_INF("\n"); | |
LOG_INF("n_draft = %d\n", n_draft); | |
LOG_INF("n_predict = %d\n", n_predict); | |
LOG_INF("n_drafted = %d\n", n_drafted); | |
LOG_INF("n_accept = %d\n", n_accept); | |
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); | |
LOG_INF("\n"); | |
LOG_INF("draft:\n\n"); | |
// TODO: print sampling/grammar timings for all drafts | |
llama_perf_context_print(ctx_dft); | |
LOG_INF("\n"); | |
LOG_INF("target:\n\n"); | |
common_perf_print(ctx_tgt, smpl); | |
common_sampler_free(smpl); | |
for (int s = 0; s < n_seq_dft; ++s) { | |
common_sampler_free(drafts[s].smpl); | |
} | |
llama_batch_free(batch_dft); | |
llama_free(ctx_tgt); | |
llama_free_model(model_tgt); | |
llama_free(ctx_dft); | |
llama_free_model(model_dft); | |
llama_backend_free(); | |
LOG("\n\n"); | |
return 0; | |
} | |