Spaces:
Sleeping
Sleeping
File size: 4,671 Bytes
887b79e 2b6fdc5 887b79e 2b6fdc5 887b79e 08ab9d7 887b79e 2b6fdc5 08ab9d7 2b6fdc5 4ca555a 2b6fdc5 4ca555a 2b6fdc5 4ca555a 08ab9d7 2b6fdc5 08ab9d7 2b6fdc5 4ca555a 2b6fdc5 4ca555a 08ab9d7 2b6fdc5 08ab9d7 2b6fdc5 08ab9d7 4ca555a 08ab9d7 887b79e 2b6fdc5 887b79e 2b6fdc5 887b79e 08ab9d7 887b79e 2b6fdc5 08ab9d7 887b79e 2b6fdc5 887b79e 2b6fdc5 887b79e 08ab9d7 887b79e 2b6fdc5 887b79e 2b6fdc5 887b79e 08ab9d7 887b79e 2b6fdc5 887b79e 2b6fdc5 887b79e 2b6fdc5 887b79e 2b6fdc5 887b79e 2b6fdc5 887b79e 2b10cea 08ab9d7 887b79e 2b10cea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader
import tempfile
import os
# PDF 문서로부터 텍스트를 추출하는 함수입니다.
def get_pdf_text(pdf_docs):
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, pdf_docs.name)
with open(temp_filepath, "wb") as f:
f.write(pdf_docs.getvalue())
pdf_loader = PyPDFLoader(temp_filepath)
pdf_doc = pdf_loader.load()
return pdf_doc
# 텍스트 파일을 처리하는 함수입니다.
def get_text_file(docs):
text = docs.getvalue().decode("utf-8")
return [text]
# CSV 파일을 처리하는 함수입니다.
def get_csv_file(docs):
import pandas as pd
csv_text = docs.getvalue().decode("utf-8")
csv_data = pd.read_csv(pd.compat.StringIO(csv_text))
csv_columns = csv_data.columns.tolist()
csv_rows = csv_data.to_dict(orient='records')
csv_texts = [', '.join([f"{col}: {row[col]}" for col in csv_columns]) for row in csv_rows]
return csv_texts
# JSON 파일을 처리하는 함수입니다.
def get_json_file(docs):
import json
json_text = docs.getvalue().decode("utf-8")
json_data = json.loads(json_text)
json_texts = [item.get('text', '') for item in json_data]
return json_texts
# 문서들을 처리하여 텍스트 청크로 나누는 함수입니다.
def get_text_chunks(documents):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
return text_splitter.split_documents(documents)
# 텍스트 청크들로부터 벡터 스토어를 생성하는 함수입니다.
def get_vectorstore(text_chunks):
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(text_chunks, embeddings)
return vectorstore
# 대화 체인을 생성하는 함수입니다.
def get_conversation_chain(vectorstore):
gpt_model_name = 'gpt-3.5-turbo'
llm = ChatOpenAI(model_name=gpt_model_name)
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
# 사용자 입력을 처리하는 함수입니다.
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(f"<div>{message.content}</div>", unsafe_allow_html=True)
else:
st.write(f"<div>{message.content}</div>", unsafe_allow_html=True)
def main():
st.set_page_config(page_title="Chat with multiple Files", page_icon=":books:")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple Files :")
user_question = st.text_input("Ask a question about your documents:")
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader(
"Upload your files here and click on 'Process'",
accept_multiple_files=True
)
if st.button("Process"):
with st.spinner("Processing"):
doc_list = []
for file in docs:
if file.type == 'text/plain':
doc_list.extend(get_text_file(file))
elif file.type == 'application/pdf':
doc_list.extend(get_pdf_text(file))
elif file.type == 'text/csv':
doc_list.extend(get_csv_file(file))
elif file.type == 'application/json':
doc_list.extend(get_json_file(file))
text_chunks = get_text_chunks(doc_list)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversation_chain(vectorstore)
if user_question and st.session_state.conversation: # 대화 체인이 있을 때만 사용자 입력 처리
handle_userinput(user_question)
if __name__ == '__main__':
main() |