Spaces:
Sleeping
Sleeping
File size: 4,336 Bytes
887b79e 4ca555a b84cc9f 4ca555a 887b79e 4ca555a 887b79e b84cc9f 887b79e 8bc6aeb 4ca555a 887b79e 4ca555a 887b79e 4ca555a 887b79e 4ca555a 887b79e 4ca555a 887b79e 4ca555a 887b79e b84cc9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import streamlit as st
from dotenv import load_dotenv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
import tempfile
import os
css = """
<style>
/* 여기에 CSS 코드를 넣어주세요 */
</style>
"""
def get_pdf_text(pdf_docs):
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, pdf_docs.name)
with open(temp_filepath, "wb") as f:
f.write(pdf_docs.getvalue())
pdf_loader = PyPDFLoader(temp_filepath)
pdf_doc = pdf_loader.load()
return pdf_doc
def get_text_file(docs):
text_loader = TextLoader(docs.name)
text = text_loader.load()
return [text]
def get_csv_file(docs):
csv_loader = CSVLoader(docs.name)
csv_text = csv_loader.load()
return csv_text.values.tolist()
def get_json_file(docs):
json_loader = JSONLoader(docs.name)
json_text = json_loader.load()
return [json_text]
def get_text_chunks(documents):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
documents = text_splitter.split_documents(documents)
return documents
def get_vectorstore(text_chunks):
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(text_chunks, embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
gpt_model_name = 'gpt-3.5-turbo'
llm = ChatOpenAI(model_name=gpt_model_name)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple Files",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple Files :")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
openai_key = st.text_input("Paste your OpenAI API key (sk-...)")
if openai_key:
os.environ["OPENAI_API_KEY"] = openai_key
st.subheader("Your documents")
docs = st.file_uploader(
"Upload your files here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
doc_list = []
for file in docs:
if file.type == 'text/plain':
doc_list.extend(get_text_file(file))
elif file.type in ['application/octet-stream', 'application/pdf']:
doc_list.extend(get_pdf_text(file))
elif file.type == 'text/csv':
doc_list.extend(get_csv_file(file))
elif file.type == 'application/json':
doc_list.extend(get_json_file(file))
text_chunks = get_text_chunks(doc_list)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main()
|