File size: 5,459 Bytes
887b79e
dfc3add
 
 
 
 
 
887b79e
 
 
dfc3add
 
 
 
887b79e
 
08ab9d7
887b79e
2b6fdc5
 
 
 
 
 
 
08ab9d7
 
2b6fdc5
4ca555a
2b6fdc5
 
 
4ca555a
2b6fdc5
4ca555a
08ab9d7
2b6fdc5
 
08ab9d7
 
 
2b6fdc5
4ca555a
2b6fdc5
 
4ca555a
08ab9d7
2b6fdc5
 
08ab9d7
2b6fdc5
08ab9d7
4ca555a
08ab9d7
887b79e
 
2b6fdc5
 
 
887b79e
2b6fdc5
887b79e
08ab9d7
 
887b79e
 
2b6fdc5
 
08ab9d7
887b79e
2b6fdc5
887b79e
 
2b6fdc5
 
887b79e
 
 
 
 
 
 
08ab9d7
 
887b79e
 
 
 
 
 
2b6fdc5
887b79e
2b6fdc5
887b79e
08ab9d7
887b79e
fa456cc
 
 
 
887b79e
 
 
 
 
 
 
 
fa456cc
 
2b6fdc5
887b79e
fa456cc
 
 
 
887b79e
 
fa456cc
887b79e
 
fa456cc
887b79e
 
 
 
 
2b6fdc5
887b79e
 
 
 
 
 
 
 
2b6fdc5
887b79e
2b10cea
 
 
08ab9d7
887b79e
2b10cea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS, Chroma
from langchain.embeddings import HuggingFaceEmbeddings  # General embeddings from HuggingFace models.
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers  # For loading transformer models.
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
import tempfile # 임시 파일을 생성하기 위한 라이브러리입니다.
import os

# PDF 문서로부터 텍스트를 추출하는 함수입니다.
def get_pdf_text(pdf_docs):
    temp_dir = tempfile.TemporaryDirectory()
    temp_filepath = os.path.join(temp_dir.name, pdf_docs.name)
    with open(temp_filepath, "wb") as f:
        f.write(pdf_docs.getvalue())
    pdf_loader = PyPDFLoader(temp_filepath)
    pdf_doc = pdf_loader.load()
    return pdf_doc


# 텍스트 파일을 처리하는 함수입니다.
def get_text_file(docs):
    text = docs.getvalue().decode("utf-8")
    return [text]


# CSV 파일을 처리하는 함수입니다.
def get_csv_file(docs):
    import pandas as pd
    csv_text = docs.getvalue().decode("utf-8")
    csv_data = pd.read_csv(pd.compat.StringIO(csv_text))
    csv_columns = csv_data.columns.tolist()
    csv_rows = csv_data.to_dict(orient='records')
    csv_texts = [', '.join([f"{col}: {row[col]}" for col in csv_columns]) for row in csv_rows]
    return csv_texts


# JSON 파일을 처리하는 함수입니다.
def get_json_file(docs):
    import json
    json_text = docs.getvalue().decode("utf-8")
    json_data = json.loads(json_text)
    json_texts = [item.get('text', '') for item in json_data]
    return json_texts


# 문서들을 처리하여 텍스트 청크로 나누는 함수입니다.
def get_text_chunks(documents):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    return text_splitter.split_documents(documents)


# 텍스트 청크들로부터 벡터 스토어를 생성하는 함수입니다.
def get_vectorstore(text_chunks):
    embeddings = OpenAIEmbeddings()
    vectorstore = FAISS.from_documents(text_chunks, embeddings)
    return vectorstore


# 대화 체인을 생성하는 함수입니다.
def get_conversation_chain(vectorstore):
    gpt_model_name = 'gpt-3.5-turbo'
    llm = ChatOpenAI(model_name=gpt_model_name)
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


# 사용자 입력을 처리하는 함수입니다.
def handle_userinput(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(f"<div>{message.content}</div>", unsafe_allow_html=True)
        else:
            st.write(f"<div>{message.content}</div>", unsafe_allow_html=True)


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple Files",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with multiple Files :")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        openai_key = st.text_input("Paste your OpenAI API key (sk-...)")
        if openai_key:
            os.environ["OPENAI_API_KEY"] = openai_key

        st.subheader("Your documents")
        docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                doc_list = []

                for file in docs:
                    if file.type == 'text/plain':
                        doc_list.extend(get_text_file(file))
                    elif file.type == 'application/pdf':
                        doc_list.extend(get_pdf_text(file))
                    elif file.type == 'text/csv':
                        doc_list.extend(get_csv_file(file))
                    elif file.type == 'application/json':
                        doc_list.extend(get_json_file(file))

                text_chunks = get_text_chunks(doc_list)
                vectorstore = get_vectorstore(text_chunks)
                st.session_state.conversation = get_conversation_chain(vectorstore)

    if user_question and st.session_state.conversation:  # 대화 체인이 있을 때만 사용자 입력 처리
        handle_userinput(user_question)


if __name__ == '__main__':
    main()