Adding City Adresse Commune and cercle to Physical DB
Browse files- physical_db/physical_database.csv +0 -0
- queries/process_gsm.py +4 -2
- queries/process_site_db.py +15 -0
- utils/convert_to_excel.py +3 -0
- utils/utils_vars.py +11 -1
physical_db/physical_database.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
queries/process_gsm.py
CHANGED
@@ -232,10 +232,12 @@ def gsm_analaysis(file_path: str):
|
|
232 |
gsm_df: pd.DataFrame = UtilsVars.gsm_dfs[0]
|
233 |
trx_df: pd.DataFrame = UtilsVars.gsm_dfs[2]
|
234 |
# df to count number of site per bsc
|
235 |
-
df_site_per_bsc = gsm_df[["BSC", "code"]]
|
236 |
df_site_per_bsc = df_site_per_bsc.drop_duplicates(subset=["code"], keep="first")
|
237 |
|
238 |
-
df_site_per_lac = gsm_df.loc[
|
|
|
|
|
239 |
df_site_per_lac.loc[:, "code_lac"] = (
|
240 |
df_site_per_lac["code"].astype(str)
|
241 |
+ "_"
|
|
|
232 |
gsm_df: pd.DataFrame = UtilsVars.gsm_dfs[0]
|
233 |
trx_df: pd.DataFrame = UtilsVars.gsm_dfs[2]
|
234 |
# df to count number of site per bsc
|
235 |
+
df_site_per_bsc: pd.DataFrame = gsm_df[["BSC", "code"]]
|
236 |
df_site_per_bsc = df_site_per_bsc.drop_duplicates(subset=["code"], keep="first")
|
237 |
|
238 |
+
df_site_per_lac: pd.DataFrame = gsm_df.loc[
|
239 |
+
:, ["BSC", "locationAreaIdLAC", "code"]
|
240 |
+
].copy()
|
241 |
df_site_per_lac.loc[:, "code_lac"] = (
|
242 |
df_site_per_lac["code"].astype(str)
|
243 |
+ "_"
|
queries/process_site_db.py
CHANGED
@@ -12,6 +12,9 @@ GSM_COLUMNS = [
|
|
12 |
"Latitude",
|
13 |
"Hauteur",
|
14 |
"City",
|
|
|
|
|
|
|
15 |
]
|
16 |
|
17 |
WCDMA_COLUMNS = [
|
@@ -23,6 +26,9 @@ WCDMA_COLUMNS = [
|
|
23 |
"Latitude",
|
24 |
"Hauteur",
|
25 |
"City",
|
|
|
|
|
|
|
26 |
]
|
27 |
LTE_COLUMNS = [
|
28 |
"code",
|
@@ -33,6 +39,9 @@ LTE_COLUMNS = [
|
|
33 |
"Latitude",
|
34 |
"Hauteur",
|
35 |
"City",
|
|
|
|
|
|
|
36 |
]
|
37 |
|
38 |
CODE_COLUMNS = [
|
@@ -42,6 +51,9 @@ CODE_COLUMNS = [
|
|
42 |
"Latitude",
|
43 |
"Hauteur",
|
44 |
"City",
|
|
|
|
|
|
|
45 |
]
|
46 |
|
47 |
|
@@ -155,6 +167,9 @@ def site_db():
|
|
155 |
"Latitude",
|
156 |
"Hauteur",
|
157 |
"City",
|
|
|
|
|
|
|
158 |
]
|
159 |
]
|
160 |
|
|
|
12 |
"Latitude",
|
13 |
"Hauteur",
|
14 |
"City",
|
15 |
+
"Adresse",
|
16 |
+
"Commune",
|
17 |
+
"Cercle",
|
18 |
]
|
19 |
|
20 |
WCDMA_COLUMNS = [
|
|
|
26 |
"Latitude",
|
27 |
"Hauteur",
|
28 |
"City",
|
29 |
+
"Adresse",
|
30 |
+
"Commune",
|
31 |
+
"Cercle",
|
32 |
]
|
33 |
LTE_COLUMNS = [
|
34 |
"code",
|
|
|
39 |
"Latitude",
|
40 |
"Hauteur",
|
41 |
"City",
|
42 |
+
"Adresse",
|
43 |
+
"Commune",
|
44 |
+
"Cercle",
|
45 |
]
|
46 |
|
47 |
CODE_COLUMNS = [
|
|
|
51 |
"Latitude",
|
52 |
"Hauteur",
|
53 |
"City",
|
54 |
+
"Adresse",
|
55 |
+
"Commune",
|
56 |
+
"Cercle",
|
57 |
]
|
58 |
|
59 |
|
|
|
167 |
"Latitude",
|
168 |
"Hauteur",
|
169 |
"City",
|
170 |
+
"Adresse",
|
171 |
+
"Commune",
|
172 |
+
"Cercle",
|
173 |
]
|
174 |
]
|
175 |
|
utils/convert_to_excel.py
CHANGED
@@ -140,6 +140,9 @@ def get_format_map_by_format_type(formats: dict, format_type: str) -> dict:
|
|
140 |
"Latitude": formats["green"],
|
141 |
"Hauteur": formats["green"],
|
142 |
"City": formats["green"],
|
|
|
|
|
|
|
143 |
"number_trx_per_cell": formats["blue_light"],
|
144 |
"number_trx_per_bcf": formats["blue_light"],
|
145 |
"number_trx_per_site": formats["blue_light"],
|
|
|
140 |
"Latitude": formats["green"],
|
141 |
"Hauteur": formats["green"],
|
142 |
"City": formats["green"],
|
143 |
+
"Adresse": formats["green"],
|
144 |
+
"Commune": formats["green"],
|
145 |
+
"Cercle": formats["green"],
|
146 |
"number_trx_per_cell": formats["blue_light"],
|
147 |
"number_trx_per_bcf": formats["blue_light"],
|
148 |
"number_trx_per_site": formats["blue_light"],
|
utils/utils_vars.py
CHANGED
@@ -16,7 +16,17 @@ def get_physical_db():
|
|
16 |
"""
|
17 |
physical = pd.read_csv(url)
|
18 |
physical = physical[
|
19 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
]
|
21 |
return physical
|
22 |
|
|
|
16 |
"""
|
17 |
physical = pd.read_csv(url)
|
18 |
physical = physical[
|
19 |
+
[
|
20 |
+
"Code_Sector",
|
21 |
+
"Azimut",
|
22 |
+
"Longitude",
|
23 |
+
"Latitude",
|
24 |
+
"Hauteur",
|
25 |
+
"City",
|
26 |
+
"Adresse",
|
27 |
+
"Commune",
|
28 |
+
"Cercle",
|
29 |
+
]
|
30 |
]
|
31 |
return physical
|
32 |
|