DavMelchi commited on
Commit
9d69630
·
1 Parent(s): 002ceab

Adding City Adresse Commune and cercle to Physical DB

Browse files
physical_db/physical_database.csv CHANGED
The diff for this file is too large to render. See raw diff
 
queries/process_gsm.py CHANGED
@@ -232,10 +232,12 @@ def gsm_analaysis(file_path: str):
232
  gsm_df: pd.DataFrame = UtilsVars.gsm_dfs[0]
233
  trx_df: pd.DataFrame = UtilsVars.gsm_dfs[2]
234
  # df to count number of site per bsc
235
- df_site_per_bsc = gsm_df[["BSC", "code"]]
236
  df_site_per_bsc = df_site_per_bsc.drop_duplicates(subset=["code"], keep="first")
237
 
238
- df_site_per_lac = gsm_df.loc[:, ["BSC", "locationAreaIdLAC", "code"]].copy()
 
 
239
  df_site_per_lac.loc[:, "code_lac"] = (
240
  df_site_per_lac["code"].astype(str)
241
  + "_"
 
232
  gsm_df: pd.DataFrame = UtilsVars.gsm_dfs[0]
233
  trx_df: pd.DataFrame = UtilsVars.gsm_dfs[2]
234
  # df to count number of site per bsc
235
+ df_site_per_bsc: pd.DataFrame = gsm_df[["BSC", "code"]]
236
  df_site_per_bsc = df_site_per_bsc.drop_duplicates(subset=["code"], keep="first")
237
 
238
+ df_site_per_lac: pd.DataFrame = gsm_df.loc[
239
+ :, ["BSC", "locationAreaIdLAC", "code"]
240
+ ].copy()
241
  df_site_per_lac.loc[:, "code_lac"] = (
242
  df_site_per_lac["code"].astype(str)
243
  + "_"
queries/process_site_db.py CHANGED
@@ -12,6 +12,9 @@ GSM_COLUMNS = [
12
  "Latitude",
13
  "Hauteur",
14
  "City",
 
 
 
15
  ]
16
 
17
  WCDMA_COLUMNS = [
@@ -23,6 +26,9 @@ WCDMA_COLUMNS = [
23
  "Latitude",
24
  "Hauteur",
25
  "City",
 
 
 
26
  ]
27
  LTE_COLUMNS = [
28
  "code",
@@ -33,6 +39,9 @@ LTE_COLUMNS = [
33
  "Latitude",
34
  "Hauteur",
35
  "City",
 
 
 
36
  ]
37
 
38
  CODE_COLUMNS = [
@@ -42,6 +51,9 @@ CODE_COLUMNS = [
42
  "Latitude",
43
  "Hauteur",
44
  "City",
 
 
 
45
  ]
46
 
47
 
@@ -155,6 +167,9 @@ def site_db():
155
  "Latitude",
156
  "Hauteur",
157
  "City",
 
 
 
158
  ]
159
  ]
160
 
 
12
  "Latitude",
13
  "Hauteur",
14
  "City",
15
+ "Adresse",
16
+ "Commune",
17
+ "Cercle",
18
  ]
19
 
20
  WCDMA_COLUMNS = [
 
26
  "Latitude",
27
  "Hauteur",
28
  "City",
29
+ "Adresse",
30
+ "Commune",
31
+ "Cercle",
32
  ]
33
  LTE_COLUMNS = [
34
  "code",
 
39
  "Latitude",
40
  "Hauteur",
41
  "City",
42
+ "Adresse",
43
+ "Commune",
44
+ "Cercle",
45
  ]
46
 
47
  CODE_COLUMNS = [
 
51
  "Latitude",
52
  "Hauteur",
53
  "City",
54
+ "Adresse",
55
+ "Commune",
56
+ "Cercle",
57
  ]
58
 
59
 
 
167
  "Latitude",
168
  "Hauteur",
169
  "City",
170
+ "Adresse",
171
+ "Commune",
172
+ "Cercle",
173
  ]
174
  ]
175
 
utils/convert_to_excel.py CHANGED
@@ -140,6 +140,9 @@ def get_format_map_by_format_type(formats: dict, format_type: str) -> dict:
140
  "Latitude": formats["green"],
141
  "Hauteur": formats["green"],
142
  "City": formats["green"],
 
 
 
143
  "number_trx_per_cell": formats["blue_light"],
144
  "number_trx_per_bcf": formats["blue_light"],
145
  "number_trx_per_site": formats["blue_light"],
 
140
  "Latitude": formats["green"],
141
  "Hauteur": formats["green"],
142
  "City": formats["green"],
143
+ "Adresse": formats["green"],
144
+ "Commune": formats["green"],
145
+ "Cercle": formats["green"],
146
  "number_trx_per_cell": formats["blue_light"],
147
  "number_trx_per_bcf": formats["blue_light"],
148
  "number_trx_per_site": formats["blue_light"],
utils/utils_vars.py CHANGED
@@ -16,7 +16,17 @@ def get_physical_db():
16
  """
17
  physical = pd.read_csv(url)
18
  physical = physical[
19
- ["Code_Sector", "Azimut", "Longitude", "Latitude", "Hauteur", "City"]
 
 
 
 
 
 
 
 
 
 
20
  ]
21
  return physical
22
 
 
16
  """
17
  physical = pd.read_csv(url)
18
  physical = physical[
19
+ [
20
+ "Code_Sector",
21
+ "Azimut",
22
+ "Longitude",
23
+ "Latitude",
24
+ "Hauteur",
25
+ "City",
26
+ "Adresse",
27
+ "Commune",
28
+ "Cercle",
29
+ ]
30
  ]
31
  return physical
32