|
import os |
|
from langchain_huggingface import HuggingFaceEndpoint |
|
import streamlit as st |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain_core.output_parsers import StrOutputParser |
|
|
|
model_id="Dazan/fnl" |
|
|
|
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1): |
|
""" |
|
Returns a language model for HuggingFace inference. |
|
|
|
Parameters: |
|
- model_id (str): The ID of the HuggingFace model repository. |
|
- max_new_tokens (int): The maximum number of new tokens to generate. |
|
- temperature (float): The temperature for sampling from the model. |
|
|
|
Returns: |
|
- llm (HuggingFaceEndpoint): The language model for HuggingFace inference. |
|
""" |
|
llm = HuggingFaceEndpoint( |
|
repo_id=model_id, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
token = os.getenv("HF_TOKEN") |
|
) |
|
return llm |
|
|
|
|
|
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="π€") |
|
st.title("Personal HuggingFace ChatBot") |
|
st.markdown(f"*This is a simple chatbot that uses the HuggingFace transformers library to generate responses to your text input. It uses the {model_id}.*") |
|
|
|
|
|
if "avatars" not in st.session_state: |
|
st.session_state.avatars = {'user': None, 'assistant': None} |
|
|
|
|
|
if 'user_text' not in st.session_state: |
|
st.session_state.user_text = None |
|
|
|
|
|
if "max_response_length" not in st.session_state: |
|
st.session_state.max_response_length = 256 |
|
|
|
if "system_message" not in st.session_state: |
|
st.session_state.system_message = "friendly AI conversing with a human user" |
|
|
|
if "starter_message" not in st.session_state: |
|
st.session_state.starter_message = "Hello, there! How can I help you today?" |
|
|
|
|
|
|
|
with st.sidebar: |
|
st.header("System Settings") |
|
|
|
|
|
st.session_state.system_message = st.text_area( |
|
"System Message", value="You are a friendly AI conversing with a human user." |
|
) |
|
st.session_state.starter_message = st.text_area( |
|
'First AI Message', value="Hello, there! How can I help you today?" |
|
) |
|
|
|
|
|
st.session_state.max_response_length = st.number_input( |
|
"Max Response Length", value=128 |
|
) |
|
|
|
|
|
st.markdown("*Select Avatars:*") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.session_state.avatars['assistant'] = st.selectbox( |
|
"AI Avatar", options=["π€", "π¬", "π€"], index=0 |
|
) |
|
with col2: |
|
st.session_state.avatars['user'] = st.selectbox( |
|
"User Avatar", options=["π€", "π±ββοΈ", "π¨πΎ", "π©", "π§πΎ"], index=0 |
|
) |
|
|
|
reset_history = st.button("Reset Chat History") |
|
|
|
|
|
if "chat_history" not in st.session_state or reset_history: |
|
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}] |
|
|
|
def get_response(system_message, chat_history, user_text, |
|
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}): |
|
""" |
|
Generates a response from the chatbot model. |
|
|
|
Args: |
|
system_message (str): The system message for the conversation. |
|
chat_history (list): The list of previous chat messages. |
|
user_text (str): The user's input text. |
|
model_id (str, optional): The ID of the HuggingFace model to use. |
|
eos_token_id (list, optional): The list of end-of-sentence token IDs. |
|
max_new_tokens (int, optional): The maximum number of new tokens to generate. |
|
get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function. |
|
|
|
Returns: |
|
tuple: A tuple containing the generated response and the updated chat history. |
|
""" |
|
|
|
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1) |
|
|
|
|
|
prompt = PromptTemplate.from_template( |
|
( |
|
"[INST] {system_message}" |
|
"\nCurrent Conversation:\n{chat_history}\n\n" |
|
"\nUser: {user_text}.\n [/INST]" |
|
"\nAI:" |
|
) |
|
) |
|
|
|
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') |
|
|
|
|
|
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history)) |
|
response = response.split("AI:")[-1] |
|
|
|
|
|
chat_history.append({'role': 'user', 'content': user_text}) |
|
chat_history.append({'role': 'assistant', 'content': response}) |
|
return response, chat_history |
|
|
|
|
|
chat_interface = st.container(border=True) |
|
with chat_interface: |
|
output_container = st.container() |
|
st.session_state.user_text = st.chat_input(placeholder="Enter your text here.") |
|
|
|
|
|
with output_container: |
|
|
|
for message in st.session_state.chat_history: |
|
|
|
if message['role'] == 'system': |
|
continue |
|
|
|
|
|
with st.chat_message(message['role'], |
|
avatar=st.session_state['avatars'][message['role']]): |
|
st.markdown(message['content']) |
|
|
|
|
|
if st.session_state.user_text: |
|
|
|
|
|
with st.chat_message("user", |
|
avatar=st.session_state.avatars['user']): |
|
st.markdown(st.session_state.user_text) |
|
|
|
|
|
with st.chat_message("assistant", |
|
avatar=st.session_state.avatars['assistant']): |
|
|
|
with st.spinner("Thinking..."): |
|
|
|
response, st.session_state.chat_history = get_response( |
|
system_message=st.session_state.system_message, |
|
user_text=st.session_state.user_text, |
|
chat_history=st.session_state.chat_history, |
|
max_new_tokens=st.session_state.max_response_length, |
|
) |
|
st.markdown(response) |