Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,8 @@ from langchain.document_loaders import UnstructuredURLLoader
|
|
10 |
from langchain_groq import ChatGroq
|
11 |
from langchain.embeddings import OpenAIEmbeddings
|
12 |
from langchain.vectorstores import FAISS
|
|
|
|
|
13 |
|
14 |
from dotenv import load_dotenv
|
15 |
load_dotenv() # take environment variables from .env (especially openai api key)
|
@@ -42,7 +44,8 @@ if process_url_clicked:
|
|
42 |
docs = text_splitter.split_documents(data)
|
43 |
# create embeddings and save it to FAISS index
|
44 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
45 |
-
vectorstore_huggingface = FAISS.from_documents(docs, embedding_model)
|
|
|
46 |
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
47 |
time.sleep(2)
|
48 |
|
|
|
10 |
from langchain_groq import ChatGroq
|
11 |
from langchain.embeddings import OpenAIEmbeddings
|
12 |
from langchain.vectorstores import FAISS
|
13 |
+
from langchain.vectorstores import Chroma
|
14 |
+
|
15 |
|
16 |
from dotenv import load_dotenv
|
17 |
load_dotenv() # take environment variables from .env (especially openai api key)
|
|
|
44 |
docs = text_splitter.split_documents(data)
|
45 |
# create embeddings and save it to FAISS index
|
46 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
47 |
+
#vectorstore_huggingface = FAISS.from_documents(docs, embedding_model)
|
48 |
+
vectorstore_huggingface = Chroma.from_documents(docs, embedding_model)
|
49 |
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
50 |
time.sleep(2)
|
51 |
|