DeathDaDev's picture
Create app.py
7078ca9 verified
raw
history blame
1.02 kB
import gradio as gr
from transformers import AutoModelForImageClassification, AutoProcessor
import torch
# Load the model and processor
model_name = "DeathDaDev/Materializer"
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
# Define the prediction function
def classify_image(image):
# Preprocess the image
inputs = processor(images=image, return_tensors="pt")
# Perform inference
with torch.no_grad():
logits = model(**inputs).logits
# Get the predicted class
predicted_class_idx = logits.argmax(-1).item()
return model.config.id2label[predicted_class_idx]
# Create the Gradio interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Label(num_top_classes=3),
title="Image Classification with Materializer",
description="Upload an image to classify it using the Materializer model."
)
# Launch the interface
iface.launch()