Deddy's picture
Upload 10 files
44d88a1 verified
import json
import os
import re
import numpy as np
import onnxruntime
from nltk.tokenize import TweetTokenizer
from sacremoses import MosesDetokenizer
from .syllable_splitter import SyllableSplitter
ABJAD_MAPPING = {
"a": "a",
"b": "bé",
"c": "cé",
"d": "dé",
"e": "é",
"f": "èf",
"g": "gé",
"h": "ha",
"i": "i",
"j": "jé",
"k": "ka",
"l": "èl",
"m": "èm",
"n": "èn",
"o": "o",
"p": "pé",
"q": "ki",
"r": "èr",
"s": "ès",
"t": "té",
"u": "u",
"v": "vé",
"w": "wé",
"x": "èks",
"y": "yé",
"z": "zèt",
}
PHONETIC_MAPPING = {
"sy": "ʃ",
"ny": "ɲ",
"ng": "ŋ",
"dj": "dʒ",
"'": "ʔ",
"c": "tʃ",
"é": "e",
"è": "ɛ",
"ê": "ə",
"g": "ɡ",
"I": "ɪ",
"j": "dʒ",
"ô": "ɔ",
"q": "k",
"U": "ʊ",
"v": "f",
"x": "ks",
"y": "j",
}
dirname = os.path.dirname(__file__)
# Predict pronounciation with BERT Masking
# Read more: https://w11wo.github.io/posts/2022/04/predicting-phonemes-with-bert/
class Predictor:
def __init__(self, model_path):
# fmt: off
self.vocab = ['', '[UNK]', 'a', 'n', 'ê', 'e', 'i', 'r', 'k', 's', 't', 'g', 'm', 'u', 'l', 'p', 'o', 'd', 'b', 'h', 'c', 'j', 'y', 'f', 'w', 'v', 'z', 'x', 'q', '[mask]']
self.mask_token_id = self.vocab.index("[mask]")
# fmt: on
self.session = onnxruntime.InferenceSession(model_path)
def predict(self, word: str) -> str:
"""
Predict the phonetic representation of a word.
Args:
word (str): The word to predict.
Returns:
str: The predicted phonetic representation of the word.
"""
text = [self.vocab.index(c) if c != "e" else self.mask_token_id for c in word]
text.extend([0] * (32 - len(text))) # Pad to 32 tokens
inputs = np.array([text], dtype=np.int64)
(predictions,) = self.session.run(None, {"input_4": inputs})
# find masked idx token
_, masked_index = np.where(inputs == self.mask_token_id)
# get prediction at those masked index only
mask_prediction = predictions[0][masked_index]
predicted_ids = np.argmax(mask_prediction, axis=1)
# replace mask with predicted token
for i, idx in enumerate(masked_index):
text[idx] = predicted_ids[i]
return "".join([self.vocab[i] for i in text if i != 0])
class G2P:
def __init__(self):
self.tokenizer = TweetTokenizer()
self.detokenizer = MosesDetokenizer(lang="id")
dict_path = os.path.join(dirname, "data/dict.json")
with open(dict_path) as f:
self.dict = json.load(f)
model_path = os.path.join(dirname, "model/bert_pron.onnx")
self.predictor = Predictor(model_path)
self.syllable_splitter = SyllableSplitter()
def __call__(self, text: str) -> str:
"""
Convert text to phonetic representation.
Args:
text (str): The text to convert.
Returns:
str: The phonetic representation of the text.
"""
text = text.lower()
text = re.sub(r"[^ a-z0-9'\.,?!-]", "", text)
text = text.replace("-", " ")
prons = []
words = self.tokenizer.tokenize(text)
for word in words:
# PUEBI pronunciation
if word in self.dict:
pron = self.dict[word]
elif len(word) == 1 and word in ABJAD_MAPPING:
pron = ABJAD_MAPPING[word]
elif "e" not in word or not word.isalpha():
pron = word
elif "e" in word:
pron = self.predictor.predict(word)
# Replace alofon /e/ with e (temporary)
pron = pron.replace("é", "e")
pron = pron.replace("è", "e")
# Replace /x/ with /s/
if pron.startswith("x"):
pron = "s" + pron[1:]
sylls = self.syllable_splitter.split_syllables(pron)
# Decide where to put the stress
stress_loc = len(sylls) - 1
if len(sylls) > 1 and "ê" in sylls[-2]:
if "ê" in sylls[-1]:
stress_loc = len(sylls) - 2
else:
stress_loc = len(sylls)
# Apply rules on syllable basis
# All alophone are set to tense by default
# and will be changed to lax if needed
alophone = {"e": "é", "o": "o"}
alophone_map = {"i": "I", "u": "U", "e": "è", "o": "ô"}
for i, syll in enumerate(sylls, start=1):
# Put Syllable stress
if i == stress_loc:
syll = "ˈ" + syll
# Alophone syllable rules
for v in ["e", "o"]:
# Replace with lax allphone [ɛ, ɔ] if
# in closed final syllables
if v in syll and not syll.endswith(v) and i == len(sylls):
alophone[v] = alophone_map[v]
# Alophone syllable stress rules
for v in ["i", "u"]:
# Replace with lax allphone [ɪ, ʊ] if
# in the middle of syllable without stress
# and not ends with coda nasal [m, n, ng] (except for final syllable)
if (
v in syll
and not syll.startswith("ˈ")
and not syll.endswith(v)
and (
not any(syll.endswith(x) for x in ["m", "n", "ng"])
or i == len(sylls)
)
):
syll = syll.replace(v, alophone_map[v])
if syll.endswith("nk"):
syll = syll[:-2] + "ng"
elif syll.endswith("d"):
syll = syll[:-1] + "t"
elif syll.endswith("b"):
syll = syll[:-1] + "p"
elif syll.endswith("k") or (
syll.endswith("g") and not syll.endswith("ng")
):
syll = syll[:-1] + "'"
sylls[i - 1] = syll
pron = "".join(sylls)
# Apply phonetic and alophone mapping
for v in alophone:
if v == "o" and pron.count("o") == 1:
continue
pron = pron.replace(v, alophone[v])
for g, p in PHONETIC_MAPPING.items():
pron = pron.replace(g, p)
pron = pron.replace("kh", "x")
prons.append(pron)
prons.append(" ")
return self.detokenizer.detokenize(prons)