MindSupport / app.py
DeepDiveDev's picture
Update app.py
5201be4 verified
raw
history blame
1.84 kB
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import torch
from flask import Flask, request, jsonify
from transformers import AutoModelForCausalLM, AutoTokenizer
# Initialize the Flask app
app = Flask(__name__)
# Load the Hugging Face model and tokenizer for the Llama model
model_name = "mattshumer/Reflection-Llama-3.1-70B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
# Sample responses based on sentiment (dummy example, can enhance based on model usage)
responses = {
"positive": "I'm glad you're feeling positive! Keep up the great mood!",
"neutral": "It seems you're feeling neutral. I'm here if you want to talk!",
"negative": "I'm sorry you're feeling this way. Here's a helpline for support: 1-800-123-4567."
}
def analyze_sentiment(text):
"""Function to analyze the sentiment of the user input."""
inputs = tokenizer(text, return_tensors="pt").to("cuda")
outputs = model.generate(inputs["input_ids"], max_length=100)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Based on generated text, let's assume it has sentiment analysis capabilities or text summarization
if "happy" in generated_text.lower() or "good" in generated_text.lower():
return "positive"
elif "sad" in generated_text.lower() or "bad" in generated_text.lower():
return "negative"
else:
return "neutral"
@app.route('/chatbot', methods=['POST'])
def chatbot():
"""Handle user input and provide appropriate responses."""
user_input = request.json['input']
sentiment = analyze_sentiment(user_input)
response = responses[sentiment]
return jsonify({"response": response, "sentiment": sentiment})
if __name__ == '__main__':
app.run(debug=True)