Spaces:
Sleeping
Sleeping
File size: 2,058 Bytes
3a8de33 fa36a00 c6111b8 3a8de33 e6b9318 c6111b8 e6b9318 c6111b8 e6b9318 30abd6a e6b9318 c6111b8 e6b9318 fa36a00 e6b9318 3a8de33 e6b9318 c6111b8 9164d6d c6111b8 9164d6d c6111b8 9164d6d c6111b8 fa36a00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoProcessor, AutoModelForVision2Seq
from PIL import Image
import numpy as np
import torch
# Load the primary model (DeepDiveDev/transformodocs-ocr)
processor1 = TrOCRProcessor.from_pretrained("DeepDiveDev/transformodocs-ocr")
model1 = VisionEncoderDecoderModel.from_pretrained("DeepDiveDev/transformodocs-ocr")
# Load the fallback model (allenai/olmOCR-7B-0225-preview)
model2 = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
processor2 = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
# Function to extract text using both models
def extract_text(image):
try:
# Convert input to PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
image = Image.open(image).convert("RGB")
# Preprocessing
image = image.convert("L") # Convert to grayscale for better OCR
image = image.resize((640, 640)) # Resize to improve accuracy
# Process with the primary model
pixel_values = processor1(images=image, return_tensors="pt").pixel_values
generated_ids = model1.generate(pixel_values)
extracted_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0]
# If output seems incorrect, use the fallback model
if len(extracted_text.strip()) < 2: # If output is too short, retry with second model
inputs = processor2(images=image, return_tensors="pt").pixel_values
generated_ids = model2.generate(inputs)
extracted_text = processor2.batch_decode(generated_ids, skip_special_tokens=True)[0]
return extracted_text
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
iface = gr.Interface(
fn=extract_text,
inputs="image",
outputs="text",
title="TransformoDocs - AI OCR",
description="Upload a handwritten document and get the extracted text.",
)
iface.launch()
|